1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anika [276]
2 years ago
7

A race car accelerates uniformly from 18.5 m/s in 2.47 seconds m. Determine the acceleration of the car in m/sec^2 and the dista

nce
Physics
1 answer:
Diano4ka-milaya [45]2 years ago
6 0

The change of velocity is from 18.5 to 46.1 m/s or 46.1 - 18.5 = 27.6 m/s. The time of change is 2.47 s. So the acceleration is 27.6 m/s / 2.47 s = 11.17 m/s^2. The distance traveled is average velocity times time of travel.

You might be interested in
What is the distance between two spheres (20 kg and 30 kg) attracted by a force of 2 x 10^-5 Newtons.
creativ13 [48]
2 times 10 to the power of 5 is your answer.
6 0
3 years ago
A roller coaster starts from rest at its highest point and then descends on its (frictionless) track. Its speed is 38 m/s when i
inysia [295]

Explanation:

look !

speed= 38m/s

start from rest= 0

5 0
2 years ago
The exosphere is the layer of the atmosphere
gayaneshka [121]
The exosphere is the layer of the atmosphere "Where gas molecules can be exchanged between Earth's atmosphere and outer space." Thus, the answer would be C.
8 0
3 years ago
Read 2 more answers
True or false?
Ksju [112]

1. False

Explanation: it's exactly the opposite. In fact, Lenz's law states that the induced current and the induced emf in a conductor are generated in such a direction that opposes to the change in magnetic flux through the coil. This is summarized by the negative sign in the Faraday's Newmann Lenz law:

\epsilon= -\frac{d\Phi }{dt}

where \epsilon is the emf induced and \frac{d\Phi}{dt} is the rate of change of magnetic flux through the coil.

Lenz's law is a consequence of the law of conservation of energy. In fact, we have:

- If the magnetic flux through a coil is increasing, then the induced current has a direction such that the magnetic field generated by the coil is opposite to the direction of the external magnetic field, in order to decrease the total flux

- If the magnetic flux through a coil is decreasing, then the induced current has a direction such that the magnetic field generated by the coil is in the same direction as the external field, in order to increase the total flux

2. False

Explanation: the magnetic flux through a surface is given by

\Phi = BA cos \theta

where

B is the magnitude of the magnetic field

A is the surface area

\theta is the angle between the direction of B and the normal vector to the surface

As we see, the magnetic flux depends not only on B and A, but also on the orientation of the coil with respect to the magnetic field.

3. False

Explanation:

- Sound waves are mechanical waves: mechanical waves are waves consisting of oscillations of the particles in a medium. Due to their nature, therefore, mechanical waves can propagate only in the presence of a medium

- Electromagnetic waves are NOT mechanical waves: they consist of oscillations of electric and magnetic fields, in a direction perpendicular to the direction of propagation of the wave. Since em waves are not mechanical waves, they do NOT need a medium to propagate, since they can also travel through a vacuum; therefore the original statement is false.

5 0
3 years ago
A light source of wavelength λ illuminates a metal with a work function (a.k.a., binding energy) of BE=2.00 eV and ejects electr
slega [8]
<h2>Answer: 1.011 eV</h2>

Explanation:

The described situation is the photoelectric effect, which consists of the emission of electrons (electric current) that occurs when light falls on a metal surface under certain conditions.  

If we consider the light as a stream of photons and each of them has energy, this energy is able to pull an electron out of the crystalline lattice of the metal and communicate, in addition, a <u>kinetic energy. </u>

This is what Einstein proposed:  

Light behaves like a stream of particles called photons with an energy  E:

E=h.f (1)  

So, the energy E of the incident photon must be equal to the sum of the Work function \Phi of the metal and the kinetic energy K of the photoelectron:  

E=\Phi+K (2)  

Where \Phi is the <u>minimum amount of energy required to induce the photoemission of electrons from the surface of a metal, and </u><u>its value depends on the metal.  </u>

In this case \Phi=2eV  and K_{1}=4eV

So, for the first light source of wavelength \lambda_{1}, and  applying equation (2) we have:

E_{1}=2eV+4eV   (3)  

E_{1}=6eV   (4)  

Now, substituting (1) in (4):  

h.f=6eV (5)  

Where:  

h=4.136(10)^{-15}eV.s is the Planck constant

f is the frequency  

Now, the <u>frequency has an inverse relation with the wavelength </u>

\lambda_{1}:  

f=\frac{c}{\lambda_{1}} (6)  

Where c=3(10)^{8}m/s is the speed of light in vacuum  

Substituting (6) in (5):  

\frac{hc}{\lambda_{1}}=6eV (7)  

Then finding \lambda_{1}:  

\lambda_{1}=\frac{hc}{6eV } (8)  

\lambda_{1}=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{6eV}  

We obtain the wavelength of the first light suorce \lambda_{1}:  

\lambda_{1}=2.06(10)^{-7}m   (9)

Now, we are told the second light source \lambda_{2}  has the double the wavelength of the first:

\lambda_{2}=2\lambda_{1}=(2)(2.06(10)^{-7}m)   (10)

Then: \lambda_{2}=4.12(10)^{-7}m   (11)

Knowing this value we can find E_{2}:

E_{2}=\frac{hc}{\lambda_{2}}   (12)

E_{2}=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{4.12(10)^{-7}m}   (12)

E_{2}=3.011eV   (13)

Knowing the value of E_{2} and \lambda_{2}, and knowing we are working with the same work function, we can finally find the maximum kinetic energy K_{2} for this wavelength:

E_{2}=\Phi+K_{2} (14)  

K_{2}=E_{2}-\Phi (15)  

K_{2}=3.011eV-2eV  

K_{2}=1.011 eV  This is the maximum kinetic energy for the second light source

7 0
3 years ago
Other questions:
  • What is the power p supplied to a resistor whose resistance is r when it is known that it has a voltage δv across it?
    13·1 answer
  • What is the area of 12 1/2 and 17 1/5
    9·1 answer
  • A box sliding on a horizontal frictionless surface runs into a fixed spring, compressing it a distance x1 from its relaxed posit
    8·1 answer
  • A push or a pull on an object is known as a(n)
    6·2 answers
  • Does changing position of charges change the magnitude
    9·1 answer
  • Hey anyone here I'm ban 2 mint ago my I'd is aron7 I talk to Rachel anybody present therw​
    11·2 answers
  • A baseball with a mass of 151 g is thrown horizontally with a speed of 40.3 m/s (90 mi/h) at a bat. The ball is in contact with
    11·1 answer
  • Im B O R E D someone please entertain me :(
    7·1 answer
  • 3. Two fans blow at 5 ms^-1 in a easterly direction and 8ms^-1 in a Northerly
    6·1 answer
  • A toroidal solenoid has 600 turns, cross-sectional area 6.90 cm2, and mean radius 4.30 cm.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!