Answering the two questions in reverse order:
-- No. I don't need to know how the speed of the person changed before I can answer the question. I can answer it now.
-- The NET work done by the gravitational force is<em> zero</em>.
-- As the person and his girl-friend go up the first half of the wheel, the motor does positive work and gravity does negative work.
-- After they pass the peak at the top and come down the second half of the wheel, the motor does negative work and gravity does positive work, even though the couple may be interested in other things during that time.
-- The total work done by gravity in one complete revolution is zero.
-- The total work done by the motor in one complete revolution is only what it takes to pay back the energy robbed by friction and air resistance.
Explanation:
It is given that a particle covers 10m in first 5s and 10m in next 3s. so using the equation of motion
Case I
s=ut+
2
1
at
2
10=5u+
2
1
a(5)
2
20=10u+25a
4=2u+5a..............(1)
Case 2
In next 3s the particle covers more 10m distance. So
20=8u+
2
1
a(8)
2
5=2u+8a.........(2)
On solving equation (1) and (2)
4=2u+5a
5=2u+8a
a=
3
1
m/s
2
Put the value of a in equation (1)
u=
6
7
m/s
Now to find distance in next 10 s. total time will be 10s
s=
6
7
×10+
2
1
×
3
1
×(10)
2
s=28.33m
Distance travelled in next 2 sec
s=28.33−20=8.33m
Answer:
1. Motion
2. Empty space
3. Far apart
4. Independently
5. Random or rapid
6. Collision
7. Kinetic energy
8. Atmospheric
9. 273 Kelvin or 0° Celsius
10. 1 atm, 101.3 kPa or 760 mmHg
Explanation:
In science, matter can be defined as anything that has mass and occupies space. Any physical object that is found on earth is typically composed of matter. Matter are known to be made up of atoms and as a result has the property of existing in states.
Generally, matter exists in three (3) distinct or classical phases and these are;
I. Gas.
II. Solid.
III. Liquid.
Filling the missing words or texts in the question, we have;
The kinetic theory describes the motion of particles in matter and the forces of attraction between them. The theory assumes that the volume occupied by a gas is mostly empty space, that the particles of gas are relatively far apart, move independently of each other, and are in constant random or rapid motion. The collision between particles are perfectly elastic so that the total kinetic energy remains constant. Gas pressure results from the simultaneous collisions of billions of particles with an object. Barometers are used to measure atmospheric pressure. Standard conditions are defined as a temperature of 273 Kelvin or 0° Celsius and a pressure of 1 atm, 101.3 kPa or 760 mmHg.
Answer:
The work required is -515,872.5 J
Explanation:
Work is defined in physics as the force that is applied to a body to move it from one point to another.
The total work W done on an object to move from one position A to another B is equal to the change in the kinetic energy of the object. That is, work is also defined as the change in the kinetic energy of an object.
Kinetic energy (Ec) depends on the mass and speed of the body. This energy is calculated by the expression:

where kinetic energy is measured in Joules (J), mass in kilograms (kg), and velocity in meters per second (m/s).
The work (W) of this force is equal to the difference between the final value and the initial value of the kinetic energy of the particle:


In this case:
- W=?
- m= 2,145 kg
- v2= 12

- v1= 25

Replacing:

W= -515,872.5 J
<u><em>The work required is -515,872.5 J</em></u>