Answer:
1. Examples of transverse waves include vibrations on a string and ripples on the surface of water. We can make a horizontal transverse wave by moving the slinky vertically up and down. In a longitudinal wave the particles are displaced parallel to the direction the wave travels.
2. There are two basic types of wave motion for mechanical waves: longitudinal waves and transverse waves. The animations below demonstrate both types of wave and illustrate the difference between the motion of the wave and the motion of the particles in the medium through which the wave is travelling.
3. f is force and 人 is wave length
Explanation:
<h3>p = mv</h3>
- <em>p</em> denotes momentum
- <em>m</em> denotes mass
- <em>v</em> denotes velocity
→ p = 3 kg × 3 m/s
→ <u>p</u><u> </u><u>=</u><u> </u><u>9</u><u> </u><u>kg</u><u>.</u><u>m</u><u>/</u><u>s</u>
<u>Option</u><u> </u><u>D</u><u> </u><u>is</u><u> </u><u>corre</u><u>ct</u><u>.</u>
Answer:
The capital of Prince Edward Island is Charlottetown.
Explanation:
hope this helps, and if it did, please mark brainliest :)
<span>I think that the coefficient of cubical expansion of a substance depends on THE CHANGE IN VOLUME.
Cubical expansion, also known as, volumetric expansion has the following formula:
</span>Δ V = β V₁ ΔT
V₁ = initial volume of the body
ΔT = change in temperature of the body
β = coefficient of volumetric expansion.
β is defined as the <span>increase in volume per unit original volume per Kelvin rise in temperature.
</span>
With the above definition, it is safe to assume that the <span>coefficient of cubical expansion of a substance depends on the change in volume, which also changes in response to the change in temperature. </span>
The position of the sun and the moon affect how high the tide is