Complete question:
A college dormitory room measures 14 ft wide by 13 ft long by 6 ft high. Weight density of air is 0.07 lbs/ft3. What is the weight of air in it under normal conditions?
Answer:
the weight of the air is 76.44 lbs
Explanation:
Given;
dimension of the dormitory, = 14 ft by 13 ft by 6 ft
density of the air, = 0.07 lbs/ft³
The volume of the air in the dormitory room = 14 ft x 13 ft x 6 ft
= 1092 ft³
The weight of the air = density x volume
= 0.07 lbs/ft³ x 1092 ft³
= 76.44 lbs
Therefore, the weight of the air is 76.44 lbs
Answer:
The car stops in 7.78s and does not spare the child.
Explanation:
In order to know if the car stops before the distance to the child, you take into account the following equation:
(1)
vo: initial speed of the car = 45km/h
a: deceleration of the car = 2 m/s^2
t: time
xo: initial distance to the child = 25m
x: final distance to the child = 0m
It is necessary that the solution of the equation (1) for time t are real.
You first convert the initial speed to m/s, then replace the values of the parameters and solve the quadratic polynomial for t:


You take the first value t1 because it has physical meaning.
The solution for t is real, then, the car stops in 7.78s and does not spare the child.
Explanation:
It is given that,
A planet were discovered between the sun and Mercury, with a circular orbit of radius equal to 2/3 of the average orbit radius of Mercury.
Mass of the Sun, 
Radius of Mercury's orbit, 
Radius of discovered planet, 

Let T is the orbital period of such a planet. Using Kepler's third law of planetary motion as :




T = 4135214.625 s
or
T = 47.86 days
So, the orbital period of such a planet is 47.86 days. Hence, this is the required solution.
Answer:
R = 4.77 ohms
Explanation:
Four resistors are given such that,
R₁ = 2 ohms
R₂ = 3 ohms
R₃ = 5 ohms
R₄ = 10 ohms
Here, R₁ and R₂ in series. The equivalent is given by :
R₁₂ = R₁ + R₂
= 2 + 5
R₁₂ = 7 ohms
Similarly, R₃ and R₄ are in series. so,
R₃₄ = R₃ + R₄
= 10+5
R₃₄ = 15 ohms
Now, R₁₂ and R₃₄ are in parallel. So,

So, the equivalent resistance s 4.77 ohms.
if they had a suitable amount to cause an interruption in the waves so huge and vast that it makes waves..... it depends because you can have any amount and get different results any day though
hope this helps plz mark me brainliest