Electronic configuration: The distribution or arrangement of electrons of a molecule or an atom in molecular or atomic orbitals.
Ground state electron configuration: The distribution of electrons of an atom or molecule around the nucleus with lower levels of energy.
Now,
stands for Ruthenium with atomic number 44. It is a metal and thus, has ability to lose electrons and, becomes positively charged ion.
One can write the electronic configuration with the help of atomic number and Afbau principle, Pauli exclusion principle etc.
Ground electronic Configuration is as follows:

Soft Hand notation: ![[Kr]4d^{7}5s^{1}](https://tex.z-dn.net/?f=%5BKr%5D4d%5E%7B7%7D5s%5E%7B1%7D)
Now, when ruthenium loses two electrons then it becomes
, thus electron configuration becomes
Soft Hand notation: ![[Kr]4d^{6}](https://tex.z-dn.net/?f=%5BKr%5D4d%5E%7B6%7D)
The ground state electronic configuration of Ruthenium is
and when it loses two electrons, then electronic configuration becomes
(
)
Answer:
The specific heat of gold is 0.129 J/g°C
Explanation:
Step 1: Data given
Mass of gold = 15.3 grams
Heat absorbed = 87.2 J
Initial temperature = 35.0 °C
Final temperature = 79.2 °C
Step 2:
Q = m*c*ΔT
⇒ Q =the heat absorbed = 87.2 J
⇒ m = the mass of gold = 15.3 grams
⇒ c = the specific heat of gold = TO BE DETERMINED
⇒ ΔT = The change in temperature = T2 - T1 = 79.2 - 35.0 = 44.2 °C
87.2 J = 15.3g * c * 44.2°C
c = 87.2 / (15.3 * 44.2)
c = 0.129 J/g°C
The specific heat of gold is 0.129 J/g°C
The correct answer should be option C. hope this helps
Answer:
The answer to your question is MgSO₄ 5H₂O
Explanation:
Data
mass of MgSO₄ = 2.86 g
mass of H₂O = 2.14 g (5 - 2.86)
Process
1.- Calculate the molecular mass of the compounds
MgSO₄ = 24 + 32 + (16 x 4) = 120
H₂O = 16 + 2 = 18
2.- Convert the grams obtain to moles
120 g of MgSO₄ --------------- 1 mol
2.8 g ---------------- x
x = (2.8 x 1)/120
x = 0.024 moles
18 g of H₂O --------------------- 1 mol
2.14 g -------------------- x
x = (2.14 x 1)/18
x = 0.119
3.- Divide by the lowest number of moles
MgSO₄ = 0.024/0.024 = 1
H₂O = 0.119/ 0.024 = 5
4.- Write the molecular formula
MgSO₄5H₂O
Answer:
2
Explanation:
The total number of atoms in silver sulfate Ag2SO4 is 2