Answer:
velocity during second d = 20.0 mi/h
Explanation:
Total distance travelled is 2d, with an average velocity of 30.0 mi/h you can express the time travelled in terms of d:
distance = velocity * time
time = distance / velocity
time = 2d/30.0
The time needed for the first d at 60.0 is:
time = d/60.0
The time in the second d you can get it by substracting both times (total time - time for the first d)
second d time = 2d/30.0 - d/60.0
= 4d/60.0 - d/60.0
= 3d/60.0
and with the time (3d/60.0) and the distance travelled (d) you can get the velocity:
velocity = distance / time
velocity = d / (3d/60.0)
= 60.0/3 = 20.0 mi/h
Answer:
D. A lower Voltage into a higher
Explanation:
It is given that,
When the front wheels are over the scale, the weight recorded by the scale is 5800 N, F₁ = 5800 N
When the rear wheels are over the scale, the scale reads 6500 N, F₂ = 6500
The distance between the front and rear wheels is measured to be 3.20 m, x₂ = 3.2 m
We need to find the location of center of mass behind the front wheels. Let the center of is located at a distance of x₁. Thus balancing the torques we get :

On solving the above equation we get, x₂ = 1.69 m
So, the center of mass is located at a distance of 1.69 meters behind the front wheels.
It needs the rate of the faster cyclist and the rate of the slower cyclist
Answer:
<h2>4 kg</h2>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>4 kg</h3>
Hope this helps you