Whether water is frozen, in a gaseous state, or is a liquid, it is still H2O. So the chemical composition does stay the same.
Answer:
a. Gly-Lys + Leu-Ala-Cys-Arg + Ala-Phe
b. Glu-Ala-Phe + Gly-Ala-Tyr
Explanation:
In this case, we have to remember which peptidic bonds can break each protease:
-) <u>Trypsin</u>
It breaks selectively the peptidic bond in the carbonyl group of lysine or arginine.
-) <u>Chymotrypsin</u>
It breaks selectively the peptidic bond in the carbonyl group of phenylalanine, tryptophan, or tyrosine.
With this in mind in "peptide a", the peptidic bonds that would be broken are the ones in the <u>"Lis"</u> and <u>"Arg"</u> (See figure 1).
In "peptide b", the peptidic bond that would be broken is the one in the <u>"Phe"</u> (See figure 2). The second amino acid that can be broken is <u>tyrosine</u>, but this amino acid is placed in the <u>C terminal spot</u>, therefore will not be involved in the <u>hydrolysis</u>.
The Zn that is 1.33 g is used at the start of the reaction where f is 520 ml and h2 collected over water is 28oc and the atmospheric pressure is 1.0 atm.
Given If 520 ml of H2 is gathered over Wate at 28 diploma Celsius and the atmospheric strain is 1 ATM if vapour strain of wate at 28 diploma celsius is 28.three mmhg then the quantity of zn in grams taken at begin of the response is.
We recognise that
h * 2 = PT - P * h * 20 = 1atm - 0.037atm
= 0.963 atm
1 * h * 2 = Ph * 2V / R * T
= 0.963 atm x 0.520 L / 0.0821 L atm/
molK * 301
= 0.02 mol h2
= 0.02molZn
So 0.02 mol Zn x 65.39 g/mol
= 1.33 g Zn
Read more about zinc;
brainly.com/question/28880469
#SPJ4