1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sweet-ann [11.9K]
3 years ago
6

At what rate is soda being sucked out of a cylindrical glass that is 6 in tall and has radius of 2 in? The depth of the soda dec

reases at a constant rate of 0.25 in/sec.
Physics
1 answer:
evablogger [386]3 years ago
4 0

Answer:

The soda is being sucket out at a rate of 3.14 cubic inches/second.

Explanation:

R= 2in

S= π*R²= 12.56 inch²

rate= 0.25 in/sec

rate of soda sucked out= rate* S

rate of soda sucked out=  3.14 inch³/sec

You might be interested in
Consider a boat heading due east at 15 miles/hour. The water's current is moving at 7.1 miles/hour at 45º south of east. Drag ve
givi [52]

If a boat is going East at 15mph and there is a water current going southeast at 45° then the boat is being drifted southward.  So since the current is going at an angle then it has a x and y component.  So Rx refers to the x-component force of the current and Ry refers to the y-component of the current, and |R| refers to the magnitude of these forces.

7 0
3 years ago
Read 2 more answers
A large pot is placed on a stove and 1.2 kg of water at 14°C is added to the pot. The temperature of the water is raised evenly
CaHeK987 [17]

Answer:

100°heat

Explanation:

since when i calculate this and that, the answer is 100° heat.

sorry if it is inconvenient

3 0
3 years ago
A ball is shot from the ground into the air. At a height of 8.8 m, the velocity is observed to be
Mariulka [41]

Answer:

h = 10.4 m

R = 22.48 m

v= 16,2 m/s , α = 61.7°, below the horizontal

v = (7.7)i + (-14.3)j in meters per second (i horizontal, j downward)

Explanation:

The ball describes a parabolic path, and the equations of the movement are:

Equation of the uniform rectilinear motion (horizontal ) :

x = vx*t  :

Equations of the uniformly accelerated rectilinear motion of upward   (vertical ).

y = (v₀y)*t - (1/2)*g*t² Equation (2)

vfy² = v₀y² -2gy Equation (3)

vfy = v₀y -gt Equation (4)

Where:  

x: horizontal position in meters (m)

t : time (s)

vx: horizontal velocity  in m  

y: vertical position in meters (m)  

v₀y: initial  vertical velocity  in m/s  

vfy: final  vertical velocity  in m/s  

g: acceleration due to gravity in m/s²

Known data

y= 8.8 m

v = ( (7.7)i + (5.7)j  ) m/s : vx= 7.7 m/s , vy= 5.7 m/s

g = 9.8 m/s²

Calculation of the  initial  vertical velocity ( v₀y)

We apply Equation (3) with the known data

(vfy)² = (v₀y)² -2*g*y

(5.7)² = (v₀y)²- (2)*(9.8)*(8.8)

(5.7)²+ 172.48 =  (v₀y)²

v_{oy} = \sqrt{(5.7)^{2}+ 172.48 }

v₀y = 14.3 m/s

Calculation of the maximum height  the ball rise (h)

In the maximum height vfy=0

We apply the Equation (3) :

(vfy)² = (v₀y)² -2*g*y

0 = (14.3)² - 2*98*h

h = (14.3)² / 19.6

h = 10.4 m

Calculation of the time it takes for the ball to the maximum height

We apply the Equation (4) :

vfy = v₀y -gt

0 = v₀y -gt

gt = v₀y

t = v₀y/g

t = 14.3/9.8

t= 1.46 s

Flight time = 2t = 2.92 s

Total horizontal distance traveled by the ball  (R)

We replace data in the equation (1)

x =vx*t    vx= 7.7 m/s , t =2.92 s  (Flight time)

R = (7.7)* (2.92) = 22.48 m

Velocity of the ball (magnitude (v) and direction (α)) the instant before it hits the ground

vx = 7.7 m/s

vy = v₀y -gt = 14.3 - 9.8* (2.92) = -14.3 m/s

v= \sqrt{v_{x}^{2}+v_{y}^{2}  }

v= \sqrt{(7.7)^{2}+ (-14.3)^{2}  }

v= 16,2 m/s

\alpha = tan^{-1} (\frac{v_{y} }{v_{x} })

\alpha = tan^{-1} (\frac{-14.3 }{7.7 })

α = -61.7°

α = 61.7°, below the horizontal

i- j components of the v

v = (7.7)i + (-14.3)j in meters per second (i horizontal, j downward)

5 0
3 years ago
According to the law of conservation of energy, which statement must be
alina1380 [7]

Answer: THE ANSWER IS C!

The total energy of a system can decrease only if energy leaves the system.

Explanation: Apex!

7 0
3 years ago
A sample of water with a mass of 1 gram freezes at 32°F. At what temperature will a 100-gram sample of water freeze?
valkas [14]

Answer:

3200°F

Explanation:

just add two zero's to the end

8 0
3 years ago
Other questions:
  • Newton's laws of motion
    9·1 answer
  • The flywheel of a motor has a mass of 300.0 kg and a radius of 55 cm. If the motor can exert a torque of 2000.0 N . m on this fl
    15·1 answer
  • What is the average rate of change for this exponential function for the interval from x = 2 to x= 4 ?
    12·2 answers
  • A 500.0-g chunk of an unknown metal, which has been in boiling water for several minutes, is quickly dropped into an insulating
    9·1 answer
  • Two boys on skateboards are facing each other. They push off, the first boy (mass: 43.8 kg) traveling backward at 2.1 m/s. If th
    6·1 answer
  • HELP!!! What role might electrostatic force play in spider dispersal, according to a recent study?
    5·1 answer
  • Agreen wire that channels electrons away from a power surge is also called a.
    12·1 answer
  • How much force is needed to accelerate a 4kg mass at 12m/s/s?
    10·2 answers
  • Ions form bonds by __________ electrons.
    12·2 answers
  • Which of the following consists of photovoltaic cells?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!