Answer:
The puck moves a vertical height of 2.6 cm before stopping
Explanation:
As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.
So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.
Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So
1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².
Substituting the kinetic energy of the puck for the potential energy of the spring, we have
1/2kx² = mgh
h = kx²/2mg
= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)
= 0.009971 Nm/0.38416 N
= 0.0259 m
= 2.59 cm
≅ 2.6 cm
So the puck moves a vertical height of 2.6 cm before stopping
The answer is, C. the wavelength is measured in parallel to the direction of the wave, at any point, under the same repetition for any type of wave.
All the planets revolve around the sun counter clockwise and rotate on hteir axis counterclockwise except venus and neptune.
Answer:
A tsunami with a record run-up height of 1720 feet occurred in Lituya Bay, Alaska. On the night of July 9, 1958, an earthquake along the Fairweather Fault in the Alaska Panhandle loosened about 40 million cubic yards (30.6 million cubic meters) of rock high above the northeastern shore of Lituya Bay.
Explanation:
Here the block has two work done on it
1. Work done by gravity
2. Work done by friction force
So here it start from height "h" and then again raise to height hA after compressing the spring
So work done by the gravity is given as

Now work done by the friction force is to be calculated by finding total path length because friction force is a non conservative force and its work depends on total path


Total work done on it

So answer will be
None of these