This question is not complete, the complete question is;
The stagnation chamber of a wind tunnel is connected to a high-pressure air bottle farm which is outside the laboratory building. The two are connected by a long pipe of 4-in inside diameter. If the static pressure ratio between the bottle farm and the stagnation chamber is 10, and the bottle-farm static pressure is 100 atm, how long can the pipe be without choking? Assume adiabatic, subsonic, one-dimensional flow with a friction coefficient of 0.005
Answer:
the length of the pipe is 11583 in or 965.25 ft
Explanation:
Given the data in the question;
Static pressure ratio; p1/p2 = 10
friction coefficient f = 0.005
diameter of pipe, D =4 inch
first we obtain the value from FANN0 FLOW TABLE for pressure ratio of ( p1/p2 = 10 )so
4fL
/ D = 57.915
we substitute
(4×0.005×L
) / 4 = 57.915
0.005L
= 57.915
L
= 57.915 / 0.005
L
= 11583 in
Therefore, the length of the pipe is 11583 in or 965.25 ft
Answer - La cristalización ye un procesu químicu pol cual a partir d'un gas, un líquidu o una disolución, los iones, átomos o molécules establecen enllaces hasta formar una rede cristalina, la unidá básica d'un cristal. La cristalización emplegar con bastante frecuencia en química para purificar una sustancia sólida.
Answer:
Outdoors
Explanation:
Construction workers perform outdoors.
Answer:
The correct option is;
c. the exergy of the tank can be anything between zero to P₀·V
Explanation:
The given parameters are;
The volume of the tank = V
The pressure in the tank = 0 Pascal
The pressure of the surrounding = P₀
The temperature of the surrounding = T₀
Exergy is a measure of the amount of a given energy which a system posses that is extractable to provide useful work. It is possible work that brings about equilibrium. It is the potential the system has to bring about change
The exergy balance equation is given as follows;
![X_2 - X_1 = \int\limits^2_1 {} \, \delta Q \left (1 - \dfrac{T_0}{T} \right ) - [W - P_0 \cdot (V_2 - V_1)]- X_{destroyed}](https://tex.z-dn.net/?f=X_2%20-%20X_1%20%3D%20%5Cint%5Climits%5E2_1%20%7B%7D%20%5C%2C%20%5Cdelta%20Q%20%5Cleft%20%281%20-%20%5Cdfrac%7BT_0%7D%7BT%7D%20%5Cright%20%29%20-%20%5BW%20-%20P_0%20%5Ccdot%20%28V_2%20-%20V_1%29%5D-%20X_%7Bdestroyed%7D)
Where;
X₂ - X₁ is the difference between the two exergies
Therefore, the exergy of the system with regards to the environment is the work received from the environment which at is equal to done on the system by the surrounding which by equilibrium for an empty tank with 0 pressure is equal to the product of the pressure of the surrounding and the volume of the empty tank or P₀ × V less the work, exergy destroyed, while taking into consideration the change in heat of the system
Therefore, the exergy of the tank can be anything between zero to P₀·V.
Answer:
hello your question is incomplete attached below is the missing equation related to the question
answer : 40.389° , 38.987° , 38° , 39.869° , 40.265°
Explanation:
<u>Determine the friction angle at each depth</u>
attached below is the detailed solution
To calculate the vertical stress = depth * unit weight of sand
also inverse of Tan = Tan^-1
also qc is in Mpa while σ0 is in kPa
Friction angle at each depth
2 meters = 40.389°
3.5 meters = 38.987°
5 meters = 38.022°
6.5 meters = 39.869°
8 meters = 40.265°