Answer:
Approximately
.
Explanation:
The refractive index of the air
is approximately
.
Let
denote the refractive index of the glass block, and let
denote the angle of refraction in the glass. Let
denote the angle at which the light enters the glass block from the air.
By Snell's Law:
.
Rearrange the Snell's Law equation to obtain:
.
Hence:
.
In other words, the angle of refraction in the glass would be approximately
.
Answer:

Explanation:
The work done on a particle by external forces is defined as:

According to Newton's second law
. Thus:

Acceleration is defined as the derivative of the speed with respect to time:

Speed is defined as the derivative of the position with respect to time:

Kinetic energy is defined as
:

Answer:
a) If we apply pressure to a fluid in a sealed container, the pressure will be felt undiminished at every point in the fluid and on the walls of the container.
Explanation:
Pascal´s Principle can be applied in the hydraulic press:
If we apply a small force (F1) on a small area piston A1, then, a pressure (P) is generated that is transmitted equally to all the particles of the liquid until it reaches a larger area piston and therefore a force (F2) can be exerted that is proportional to the area(A2) of the piston.
P=F/A
P1=P2
F1/ A1= F2/ A2
F2= F1* A2/ A1
The pressure acting on one side is transmitted to all the molecules of the liquid because the liquid is incompressible.
In an incompressible liquid, the volume and amount of mass does not vary when pressure is applied.
To find the total number of miles traveled by a person, we add the distance that he has traveled: 3.0 + 5.00 + 4.000.
Now, to find the accurate number of significant figures when adding measurements, the basic rule for addition is to use the least number of decimal places when reporting the result.
Now, since 3.0 has the least number of decimal places, we report the sum with 1 decimal place and have 12.0 miles as the total distance traveled by the person to reach his destination.
Answer: 12.0 miles
Answer:
The answer is 5 meters per second.