Answer:
d)
Explanation:
the only one that makes sense
Explanation:
The given data is as follows.
Velocity of bullet,
= 814.8 m/s
Observer distance from marksman, d = 24.7 m
Let us assume that time necessary for report of rifle to reach the observer is t and will be calculated as follows.
t =
(velocity in air = 343 m/s)
= 0.072 sec
Now, before the observer hears the report the distance traveled by the bullet is as follows.

= 
= 58.66
= 59 (approx)
Thus, we can conclude that each bullet will travel a distance of 59 m.
To solve this problem it is necessary to apply the principles of conservation of Energy in order to obtain the final work done.
The electric field in terms of the Force can be expressed as

Where,
F = Force
E= Electric Field
q = Charge
Puesto que el trabajo realizado es equivalente al cambio en la energía cinetica entonces tenemos que
KE = W
KE = F*d
In the First Case,

In Second Case,



The total energy change would be subject to,


Therefore the Kinetic Energy change of the charged object is 27.976J
Answer:

Explanation:
Angular acceleration is defined by 
Angular velocity is related to the period by 
Putting all together:

Taking our initial (i) point now and our final (f) point one year later, we would have:



So for our values we have:

Where the minus sign indicates it is decelerating.
Answer:
1.98 atm
Explanation:
Given that:
Temperature = 28.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28 + 273.15) K = 301.15 K
n = 1
V = 0.500 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L atm/ K mol
Applying the equation as:
P × 0.500 L = 1 ×0.0821 L atm/ K mol × 301.15 K
⇒P (ideal) = 49.45 atm
Using Van der Waal's equation
R = 0.0821 L atm/ K mol
Where, a and b are constants.
For Ar, given that:
So, a = 1.345 atm L² / mol²
b = 0.03219 L / mol
So,


⇒P (real) = 47.47 atm
Difference in pressure = 49.45 atm - 47.47 atm = 1.98 atm