Given:
Height of top cone = 3 mm
Radius = 2 mm
Height of cylinder = 4 mm
Height of bottom cone = 1 mm
To find:
The volume of the composite figure
Solution:
Volume of 3 mm tall cone ![=\frac{1}{3} \pi r^2h](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%20r%5E2h)
![=\frac{1}{3} \pi \times 2^2\times 3](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%20%5Ctimes%202%5E2%5Ctimes%203)
Volume of 3 mm tall cone = 4π mm³
Volume of cylinder = ![\pi r^{2} h](https://tex.z-dn.net/?f=%5Cpi%20r%5E%7B2%7D%20h)
![=\pi\times 2^{2} \times 4](https://tex.z-dn.net/?f=%3D%5Cpi%5Ctimes%202%5E%7B2%7D%20%5Ctimes%204)
Volume of cylinder = 16π mm³
Volume of 1 mm tall cone ![=\frac{1}{3} \pi r^2h](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%20r%5E2h)
![=\frac{1}{3} \pi \times 2^2\times 1](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%20%5Ctimes%202%5E2%5Ctimes%201)
Volume of 1 mm tall cone = 1.33π mm³
Volume of composite figure = 4π + 16π + 1.33π
= 21.33π mm³
The volume of the composite figure is 21.33π mm³.