"I" symbol means the current goes through the system (imagine the 'I' being a line, like a circuit connecting [power to the device]) "O" symbol means the current does not go through the system. ( the circle is an open circuit, having no power flowing through it
It would still have oceans but no atmospheric water in Earth if no icy debris had arrived.
A. It would still have oceans but no atmospheric water.
<u>Explanation:</u>
Seas characterize our home planet, covering most of the Earth's surface and driving the water cycle that commands our territory and climate. However, progressively significant still, the narrative of our seas wraps our home in a far bigger setting that ventures profound into the universe and spots us in a rich group of sea universes that range our nearby planetary group and past.
It would in any case have seas yet no air water on Earth if no frigid flotsam and jetsam had shown up. For a long time, it was accepted that the frosty moons were only that - solidified husks, strong to their center. However, lately that thought has steadily been supplanted by a fresher, additionally energizing worldview.
Answer:

Explanation:
Hello!
In this case, since the percent water is computed by dividing the amount of water by the total mass of the hydrate; we infer we first need the molar mass of water and that of the hydrate as shown below:

Thus, the percent water is:

So we plug in to obtain:

Best regards!
Answer:
5)HOCH2CH2OH
Explanation:
This is also known as ethylene glycol. An increase in hydrogen bonds of a compound means an increase in the viscosity. Hydrogen bonds occur as a result of bonding with electronegative elements such as Oxygen, Nitrogen etc.
The compounds with the highest amount of Hydrogen bond represents the one with the highest viscosity which is B) HOCH2CH2OH
Answer:

Explanation:
Hello!
In this case, we can divide the problem in two steps:
1. Dilution to 278 mL: here, the initial concentration and volume are 1.20 M and 52.0 mL respectively, and a final volume of 278 mL, it means that the moles remain the same so we can write:

So we solve for C2:

2. Now, since 111 mL of water is added, we compute the final volume, V3:

So, the final concentration of the 139 mL portion is:

Best regards!