Um what are the ten objects..?
Answer:
I think it is the answer A
Explanation:
Alcohol won't stimulate the central nervous system and the peripheral nervous system because the fact that the brain and the nervous system are affected can lead to many consequences: disorders of vision, hearing, motor coordination ...
Alcohol will therefore have a damaging effect, it will therefore sedate the nervous system.
Answer:
A) s = 796.38 m
B) t = 12.742 s
C) T = 25.484 s
Explanation:
A) First of all let's find the time it takes to get to maximum height using Newton's first equation of motion.
v = u + gt
u = 125 m/s
v = 0 m/s
g = 9.81 m/s²
Thus;
0 = 125 - 9.81(t)
g is negative because motion is against gravity. Thus;
9.81t = 125
t = 125/9.81
t = 12.742 s
Max height will be gotten from Newton's 2nd equation of motion;
s = ut + ½gt²
s = (125 × 12.742) + (½ × -9.81 × 12.742²)
s = 1592.75 - 796.37
s = 796.38 m
B) time to reach maximum height is;
t = u/g
t = 125/9.81
t = 12.742 s
C) Total time elapsed is;
T = 2u/g
T = 2 × 125/9.81
T = 25.484 s
This is where we have to admit that gravitational potential energy is
one of those things that depends on the "frame of reference", or
'relative to what?'.
Potential energy = (mass) x (gravity) x (<em>height</em>).
So you have to specify <em><u>height above what</u></em> .
-- With respect to the ground, the ball has zero potential energy.
(If you let go of it, it will gain zero kinetic energy as it falls to
the ground.)
-- With respect to the floor in your basement, the potential energy is
(3) x (9.8) x (3 meters) = 88.2 joules.
(If you let go of it, it will gain 88.2 joules of kinetic energy as it falls
to the floor of your basement.)
-- With respect to the top of that 10-meter hill over there, the potential
energy is
(3) x (9.8) x (-10) = -294 joules
(Its potential energy is negative. After you let go of it, you have to give it
294 joules of energy that it doesn't have now, in order to lift it to the top of
the hill <em>where it will have zero</em> potential energy.)
Answer:
The correct option is "In order to gain more power you would need to increase either current or voltage."
Explanation:
To answer the question, we note that;
The formula for Electrical Power are as follows,
P = I²·R, or P = I·V,
Therefore, if we increase either the current, I with the voltage, V remaining constant or we increase the Voltage, V with the current, I remaining constant or we increase both the voltage, V an the current, I the Power, P will be increased.
Therefore, the correct option is "In order to gain more power you would need to increase either current or voltage."