Answer:
Impedance, Z = 107 ohms
Explanation:
It is given that,
Resistance, R = 100 ohms
Inductance, 
Capacitance, 
Frequency, f = 60 Hz
Voltage, V = 120 V
The impedance of the circuit is given by :
...........(1)
Where
is the capacitive reactance, 

is the inductive reactance, 

So, equation (1) becomes :

Z = 106.26 ohms
or
Z = 107 ohms
So, the impedance of the circuit is 107 ohms. Hence, this is the required solution.
Answer:
Explanation:
Examples are;
Ultraviolet light from sun.
Heat from a stove burner.
X-ray from an x-ray machine.
Alpha particle emit from a radio active decay of uranium.
Sound waves from your stereo.
Microwave from micro oven.
ultraviolet light from a black light.
Gamma radiations from a supernova.
AND MANY MORE.
Answer:
A & D
Explanation:
A single-displacement reaction is a chemical reaction whereby one element is substituted for another one in a compound and thereby generating a new element and also a new compound as products.
From the options, only options A & D fits this definition of single-displacement reactions.
For option D: Both left and hand and right hand sides each have one element and one compound. We can see that K is substituted from KBr to join Cl to form KCl and Br2 on the right hand side.
For option A: Both left and hand and right hand sides each have one element and one compound. We can see that OH is substituted from 2H2O to join Mg to form Mg(OH)2 and H2 on the right hand side.
The other options are not correct because they don't involve only and element and a compound on each side of the reaction.
Answer:
λ = 5.656 x 10⁻⁷ m = 565.6 nm
Explanation:
Using the formula of fringe spacing from the Young's Double Slit experiment, which is given as follows:

where,
λ = wavelength = ?
Δx = fringe spacing = 1.6 cm = 0.016 m
L = Distance between slits and screen = 4.95 m
d = slit separation = 0.175 mm = 0.000175 m
Therefore,

<u>λ = 5.656 x 10⁻⁷ m = 565.6 nm</u>