We have: Energy(E) = Planck's constant(h) × Frequency(∨)
Here, Planck's constant(h) = 6.626 × 10⁻³⁴ J/s
Frequency (∨) = 3.16 × 10¹² /s
Substitute the values into the expression:
E = (6.626 × 10⁻³⁴)(3.16 × 10¹²) J
E = 2.093 × 10⁻²¹ Joules
In short, Your Final answer would be 2.093 × 10⁻²¹ J
Hope this helps!
<span>Average velocity can be calculated by determining the total displacement divided by the total time of travel. The average velocity of an object does not tell us anything about what happens to it between the starting point and ending point. Average velocity is different from average speed because it considers the direction of travel and the overall change in position.</span>
Only once hope this helps
Answer:
25 m/s
Explanation:
Centripetal acceleration is the square of the tangential velocity divided by the radius.
a = v² / r
15.625 m/s² = v² / (40 m)
v² = 625 m²/s²
v = 25 m/s
The speed of the car is 25 m/s.
<h3>2
Answers:</h3>
a) Velocity is a vector quantity
e) Velocity is a speed with direction
=================================================
Explanation:
If we know the velocity of an object, then we know how fast it's going (speed) and where it's going (direction). It is a vector because the direction of the vector determines the direction, and the length of the vector (aka magnitude) determines the speed. So in a sense we've built in two facts of data into one visual.
An example of velocity: 10 miles per hour north. Here we have the speed of 10 mph and the direction north.
-------------------
Extra info:
- Choice B contradicts choice A, so we can cross choice B off the list.
- Choice C is false because speed is a scalar, or single quantity, and not a vector. As mentioned earlier, speed is a part of velocity, but they aren't the same exact thing.
- Choice D is false because the velocity does not account for net force. We don't have any force information built into the velocity.