Answer:
Explanation:
E₀ = 229.1 V/m
E = E₀ / √2 = 229.1 / 1.414 = 162 V/m
B = E / c ( c is velocity of em waves )
= 162 / (3 x 10⁸) = 54 x 10⁻⁸ T
rate of energy flow = ( E x B ) / μ₀
= 162 x 54 x 10⁻⁸ / 4π x 10⁻⁷
= 69.65 W per m².
Answer:
scientists will use absolute dating to find how old a fossil exactly is.
<span>The answer is -0.8 m/s. We know acceleration is the average of final minus initial velocity over time (a = (vf-v0)/t). We also know that Force is equal to Mass times Acceleration (F = ma). Using our force equation, we know that the acceleration we get is negative 8.8 (-8.8). The force is acting in the opposite direction of the rugby player, hence the negative sign. From there, plug in that number for a in the velocity equation, and solve for vf, as v0 and t are known. We get 0.8 m/s in the opposite direction that the player was running.</span>
The manager is both most and least likely to lead seminars and provide everyone skills.
<h3 /><h3>What is seasonal aisle?</h3>
When a store has a “seasonal aisle,” it suggests it has extra money to spend on items that are in season. Festivals, special days, seasons, and other things are examples of seasonal components.
An operational strategy focused on creating profit. Seasonal goods are required by a supply chain. A manager wants everyone to prioritize setting up the seasonal aisle displays because of this.
Hence, the significance of the seasonal aisle is aforementioned.
Learn more about on manager, here:
brainly.com/question/11599959
#SPJ1
Answer:
Resistance of the circuit is 820 Ω
Explanation:
Given:
Two galvanometer resistance are given along with its voltages.
Let the resistance is "R" and the values of voltages be 'V' and 'V1' along with 'G' and 'G1'.
⇒ 
⇒ 
Concept to be used:
Conversion of galvanometer into voltmeter.
Let
be the resistance of the galvanometer and
the maximum deflection in the galvanometer.
To measure maximum voltage resistance
is connected in series .
So,
⇒ 
We have to find the value of
we know that in series circuit current are same.
For
For 
⇒
equation (i) ⇒
equation (ii)
Equating both the above equations:
⇒
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
⇒ Plugging the values.
⇒ 
⇒ 
⇒ 
⇒
The coil resistance of the circuit is 820 Ω .