This question involves the concepts of the law of conservation of energy, kinetic energy, and potential energy.
The height of the hill is "166.76 m".
<h3>LAW OF CONSERVATION OF ENERGY:</h3>
According to the law of conservation of energy at the highest point of the roller coaster ride, that is, the hill, the whole (maximum) kinetic energy of the roller coaster is converted into its potential energy:

where,
- h = height of the hill = ?
= maximum velocity = 57.2 m/s
- g = acceleration due to gravity = 9.81 m/s²
Therefore,

<u>h = 166.76 m</u>
Learn more about the law of conservation of energy here:
brainly.com/question/101125
Answer:
The direction of the displacement is in North-West.
Explanation:
Resultant displacement D is
Here the direction is

Then the direction is
North-west.
1 m/s
Explanation:
To solve this question we use the following formula:
momentum = mass × velocity
momentum of the first car = 1000 kg × 2.5 m/s
momentum of the second car = 2500 kg × X m/s
To bring the cars at rest the momentum of the first car have to be equal to the momentul of the second car.
momentum of the first car = momentum of the second car
1000 kg × 25 m/s = 2500 kg × X m/s
X (velocity of the second car) = (1000 × 25) / 2500 = 1 m/s
Learn more about:
momentum
brainly.com/question/13378780
#learnwithBrainly