The answer is they follow a patter for valence electrons.
The electron configuration filling patterns of some elements in group 6b(6) and group 1b(11) reflect the increasing stability of half-filled and completely filled sublevels.
<h2>
What is electronic configuration?</h2>
The distribution of electrons in an element's atomic orbitals is described by the element's electron configuration. Atomic subshells that contain electrons are placed in a series, and the number of electrons that each one of them holds is indicated in superscript for all atomic electron configurations. For instance, sodium's electron configuration is 1s22s22p63s1.
Almost all of the elements write their electronic configurations in the same style. When the energies of two subshells differ, an electron from the lower energy subshell occasionally goes to the higher energy subshell.
This is due to two factors:
Symmetrical distribution: As is well known, stability is a result of symmetry. Because of the symmetrical distribution of electrons, orbitals where the sub-shell is exactly half-full or totally filled are more stable.
Energy exchange: The electrons in degenerate orbitals have a parallel spin and are prone to shifting positions. The energy released during this process is simply referred to as exchange energy. The greatest number of exchanges occurs when the orbitals are half- or fully-filled. Its stability is therefore at its highest.
To know more about electronic configuration, go to URL
brainly.com/question/26084288
#SPJ4
The SI unit for measuring distance is the
meter.
I attached a table of SI measurements for you :)
Hope this helped!
<h3>
Answer:</h3>
2.125 g
<h3>
Explanation:</h3>
We have;
- Mass of NaBr sample is 11.97 g
- % composition by mass of Na in the sample is 22.34%
We are required to determine the mass of 9.51 g of a NaBr sample.
- Based on the law of of constant composition, a given sample of a compound will always contain the sample percentage composition of a given element.
In this case,
- A sample of 11.97 g of NaBr contains 22.34% of Na by mass
A sample of 9.51 g of NaBr will also contain 22.345 of Na by mass
% composition of an element by mass = (Mass of element ÷ mass of the compound) × 100
Mass of the element = (% composition of an element × mass of the compound) ÷ 100
Therefore;
Mass of sodium = (22.34% × 9.51 g) ÷ 100
= 2.125 g
Thus, the mass of sodium in 9.51 g of NaBr is 2.125 g