Answer:
n = Initial volume/22.4L
Explanation:
The molar concept is simply one that is used to find the Number of moles and explain the relationship it has with avogadro's number, molecular mass, molar mass e.t.c.
Now, in terms of molar mass, number of moles is given by the formula;
n = mass of the sample/molar mass
In terms of avogadro's number, number of moles is;
1 mole = avogadro's number = 6.02 × 10^(23)
Now, when dealing with ideal gases, the molar volume of an ideal gas is 22.4 L.
Now the relationship between this volume and the mole concept is that the number of moles is gotten by dividing the initial volume by this molar volume.
Thus;
n = Initial volume/22.4L
Answer:
15.04 mL
Explanation:
Using Ideal gas equation for same mole of gas as
Given ,
V₁ = 21 L
V₂ = ?
P₁ = 9 atm
P₂ = 15 atm
T₁ = 253 K
T₂ = 302 K
Using above equation as:
Solving for V₂ , we get:
<u>V₂ = 15.04 mL</u>
Answer: The initial temperature of the iron was 
Explanation:

As we know that,

.................(1)
where,
q = heat absorbed or released
= mass of iron = 360 g
= mass of water = 750 g
= final temperature = 
= temperature of iron = ?
= temperature of water = 
= specific heat of iron = 
= specific heat of water= 
Now put all the given values in equation (1), we get
![-360\times 0.450\times (46.7-x)=[750\times 4.184\times (46.7-22.5)]](https://tex.z-dn.net/?f=-360%5Ctimes%200.450%5Ctimes%20%2846.7-x%29%3D%5B750%5Ctimes%204.184%5Ctimes%20%2846.7-22.5%29%5D)

Therefore, the initial temperature of the iron was 
5 g is bigger than 43 mg.
I hope this is right, I apologize if I'm wrong.
31
A dalton is the same as an atomic mass unit. And an atomic mass unit is approximately the mass of a nucleon (proton or neutron) such that the mass is 1 g/mol. So in this problem you have 15 protons and 16 neutrons, so the number of daltons is 15 + 16 = 31.