<u>Answer:</u>
2.39 kg
<u>Explanation:</u>
There is conservation of momentum here in this problem so we will use the following problem:

where the mass of the student
is 48.5 kg,
the mass of the skateboard
is
kg,
the initial speed of the student
is 4.25 m/s; and
the speed of the student and skateboard
is 4.05 m/s.
So substituting the given values in the above formula to get:





Therefore, the mass of the skateboard is 2.39 kg.
Answer:
437 J
Explanation:
Parameters given:
Weight of child, W = 230 N
Height of swing, h = 1.9 m
Gravitational Potential Energy is given as:
P. E. = m*g*h = W*h
m = mass
h = height above the ground
W = weight
P. E. = 230 * 1.9
P. E. = 437 J
That completely depends on all sizes and all directions of all of the vectors that combined to produce the resultant one.
Answer:
I am very confused what your question is.
Explanation:
please clarify
Answer:
wavelength = 0.968 m
frequency = 39.02 Hz
Explanation:
given data
mass = 0.0127 kg
force = 9.33 N
length = 1.93 m
to find out
wavelength and Frequency
solution
we know here linear density that is
linear density =
.........1
linear density =
linear density = 6.5803 ×
kg/m
so
wavelength will be here
wavelength =
..............2
here n = 4 for forth harmonic
wavelength = 
wavelength = 0.968 m
and
frequency will be for 4th normal mode of vibration is
frequency =
..........3
frequency = 
frequency = 1.036269 × 37.654594
frequency = 39.02 Hz