1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
3 years ago
7

Precipitation tends to be _______ on the _______ side of a mountain because water vapor _______ as it rises there.

Physics
1 answer:
Lera25 [3.4K]3 years ago
6 0

Answer:

Higher, Windward side, Condenses

Explanation:

The Windward side refers to that side of a mountain that faces the direction from which the wind is blowing. In this direction, the moisture containing hot air blowing from a distant place moves upward and strikes the mountain at a greater height, where the air mass is thin and the temperature is relatively cold. As the temperature and pressure decrease with altitude, the hot uprising air cools and gradually condenses. This results in the occurrence of high precipitation over this region i.e. the windward side of the mountain.

Therefore, the precipitation is always higher on the windward side of a mountain as the hot air undergoes condensation at greater height as it rises upward.

You might be interested in
What is the potential energy of a 2kg plant that is on a windowsill 1.3 m high?
klio [65]

Answer:

25.48

Explanation:

6 0
3 years ago
1.80 kJ of heat is added to a slug of gold and a separate 1.80 kJ of heat is added to a slug of manganese. The heat capacity of
Svetlanka [38]

Answer:

final temperature of  slug of gold is 37°C

final temperature of  slug of manganese is 28.56°C

Explanation:

Hello! To solve this problem we must take into account the concept of heat capacity, this is defined as the ratio between energy and temperature rise.

In other words it is the amount of energy that is required to increase a temperature degree.

Taking into account the above we infer the following equation

where  

C=heat capacity

7 0
3 years ago
A pulley system lifts a 1345 n weight a distance of 0.975m. Paul pulls the rope a distance of 3.90m, exerting a force of 375N. A
Rashid [163]

A. IMA: 4

The Ideal Mechanical Advantage (IMA) is given by:

IMA = \frac{d_i}{d_o}

where

d_i is the input distance

d_o is the output distance

For the pulley system in this problem, d_i = 3.90 m and d_o = 0.975 m, so the IMA is

IMA=\frac{3.90 m}{0.975 m}=4


B. MA: 3.59

The actual mechanical advantage (AMA), or simply the Mechanical Advantage (MA), is given by

MA=\frac{F_o}{F_i}

where F_o is the output force and F_i is the input force. For the pulley system in this problem, F_i = 375 N and F_o = 1345 N, so the MA is

MA=\frac{1345 N}{375 N}=3.59


C. Efficiency: 89.8 %

The efficiency of a machine is equal to the ratio between the MA and the AMA:

\eta = \frac{MA}{AMA} \cdot 100

Therefore, in this case,

\eta=\frac{3.59}{4}\cdot 100=0.898=89.8 \%

3 0
3 years ago
What is minnaloushe
Stells [14]
Minnaloushe<span> was Iseult Gonne's cat (the daughter of Yeats' unrequited love, Maud Gonne.) I've never been able to find an explanation for the name's </span>meaning<span>, and I don't think it's an Irish word</span>
3 0
3 years ago
On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a golf club improvised from a tool. The free-f
aliya0001 [1]

Answer:

15.3 s and 332 m

Explanation:

With the launch of projectiles expressions we can solve this problem, with the acceleration of the moon

    gm = 1/6 ge

    gm = 1/6  9.8 m/s² = 1.63 m/s²

We calculate the range

    R = Vo² sin 2θ  / g

    R = 25² sin (2 30) / 1.63

    R= 332 m

We will calculate the time of flight,

   Y = Voy t – ½ g t2  

   Voy = Vo sin θ

When the ball reaches the end point has the same initial  height Y=0

0 = Vo sin  t – ½  g t2

0 = 25 sin (30)  t – ½ 1.63 t2

0= 12.5 t –  0.815 t2

We solve the equation

0= t ( 12.5 -0.815 t)

 t=0 s

t= 15.3 s

The value of zero corresponds to the departure point and the flight time is 15.3 s

Let's calculate the reach on earth

R2 = 25² sin (2 30) / 9.8

R2 = 55.2 m

R/R2 = 332/55.2

R/R2 = 6

Therefore the ball travels a distance six times greater on the moon than on Earth

5 0
3 years ago
Other questions:
  • What do you call the procedure that helps you determine the volume of an irregularly shaped object, while using a graduated cyli
    12·1 answer
  • An electron is moving at 7.4 x 10^5 m/s perpendicular to a magnetic field. It experiences a force of -2.0 x 10^-13 N. What is th
    12·1 answer
  • What did the greeks call the mineral they found and why?
    6·1 answer
  • An 8.0g bullet, moving at 400 m/s, goes through a stationary block of wood in 4.0 x 10^-4s, emerging at a speed of 100 m/s. (a)
    9·1 answer
  • A person desires to reach a point that is 2.17 km from her present location and in a direction that is 29.6° north of east. Howe
    15·1 answer
  • Andy pushes a box to the right with 5 N of force. Kristen pushes the box to the left with 3 N of force. What will be the resulti
    13·1 answer
  • A 500g cart moving at 0.25 m/s collides and sticks to a stationary 750g cart. How fast do the two carts
    9·1 answer
  • I need help please will mark brainliest
    7·1 answer
  • Powers of 10
    12·1 answer
  • 3.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!