Answer:
t1 = t2 + 3.02 V = 41.5
V t1 - 1/2 g t1^2 = V t2 - 1/2 g t2^2
Both stones reach the same height after the specified times
V (t1 - t2) = g/2 (t1^2 - t2^2) = g/2 (t1 - t2) (t1 + t2)
2 V / g = t1 + t2 = 2t1 + 3.02
t1 = V / g - 1.51 = 41.5 / 9.8 -1.51 = 2.72 s
t2 = t1 + 3.02 = 5.74 sec
Check:
41.5 * 2.72 - 4.9 * 2.72^2 = 76.6 m
41.5 * 5.74 - 4.9 * 5.74^2 = 76.8 m
Speed of second stone = 41.5 - 9.8 * 2.72 = 14.8 m/s
Answer:
The potential between the plates will decrease.
Explanation:
An insulator is usually placed between the parallel plates and is also called a dielectric because it makes the amount of charge a capacitor can accommodate to increase at a particular potential difference.
Furthermore, the dielectric effect will make the electric field of the charged capacitor which is not connected to a source of supply to decrease.
Now, when the battery is removed, the charge Q remains constant and Capacity C will increase.
Formula for the potential difference is here;
V = Q/C
Since the numerator Q is constant and the denominator C increases, it means the potential difference V will decrease
Heat required to melt 0.05 kg of aluminum is 28.7 kJ.
<h3>What is the energy required to melt 0.05 kg of aluminum?</h3>
The heat energy required to melt 0.05 kg of aluminum is obtained from the heat capacity of aluminum and the melting point of aluminum.
The formula to be used is given below:
- Heat required = mass * heat capacity * temperature change
Assuming the aluminum sheet was at room temperature initially.;
Room temperature = 25 °C
Melting point of aluminum = 660.3 °C
Temperature difference = (660.3 - 25) = 635.3 903
Heat capacity of aluminum = 903 J/kg/903
Heat required = 0.05 * 903 * 635.3
Heat required = 28.7 kJ
In conclusion, the heat required is obtained from the heat change aluminum and the mass of the aluminum melted.
Learn more about heat capacity at: brainly.com/question/21406849
#SPJ1
Both believe that an atom contains negative charges and positive charges.
But both were different in the placement of charges