Answer:
H₂O
Explanation:
The empirical formular of the compound is obtained using the following steps;
Step 1: Divide the percentage composition by the atomic mass
Hydrogen = 11.21 / 1 = 11.21
Oxygen = 88.79 / 16 = 5.55
Step 2: Divide by the lowest number
Hydrogen = 11.21 / 5.55 = 2.02 ≈ 2
Oxygen = 5.55 / 5.55 = 1
This means the ratio of the elements is 2 : 1
The empirical formular (simplest formular of a compound) of the compound is;
H₂O
Answer:
Sodium Hydroxide + Sulfuric Acid = Sodium Sulfate + Water
2NaOH + H2SO4 → Na2SO4 + 2H2O
Explanation:
To balance a chemical equation, enter an equation of a chemical reaction and press the Balance button. The balanced equation will appear above.
Use uppercase for the first character in the element and lowercase for the second character. Examples: Fe, Au, Co, Br, C, O, N, F.
Ionic charges are not yet supported and will be ignored.
Replace immutable groups in compounds to avoid ambiguity. For example, C6H5C2H5 + O2 = C6H5OH + CO2 + H2O will not be balanced, but XC2H5 + O2 = XOH + CO2 + H2O will.
Compound states [like (s) (aq) or (g)] are not required.
You can use parenthesis () or brackets [].
A scientist needs to check several parameters before coming
to a conclusion about the amount of water pollution. The scientists needs to
check the amount of dissolved oxygen in the water, temperature of the water,
the clarity of the water, the PH level of the water and also the amount of
bacteria present in the water. There may be other criteria’s, but the mentioned
ones are enough to gauge the amount of pollution in the water. Scientists often
takes fish and aquatic plants from the water to be tested to check the amount
of pollution indirectly affecting these species.
Answer:
Q = 30284.88 j
Explanation:
Given data:
Mass of ethanol = 257 g
Cp = 2.4 j/g.°C
Chnage in temperature = ΔT = 49.1°C
Heat required = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Now we will put the values in formula.
Q = 257 g× 2.4 j/g.°C × 49.1 °C
Q = 30284.88 j