The person's horizontal position is given by

and the time it takes for him to travel 56.6 m is

so your first computed time is the correct one.
The question requires a bit of careful reading, and I think there may be a mistake in the problem. The person's vertical velocity
at time
is

which tells us that he would reach the ground at about
. In this time, he would have traveled

But we're told that he is caught by a net at 56.6 m, which would mean that the net cannot have been placed at the same height from which he was launched. However, it's possible that the moment at which he was launched doesn't refer to the moment the cannon went off, but rather the moment at which the person left the muzzle of the cannon a fraction of a second after the cannon was set off. After this time, the person's initial vertical velocity
would have been a bit smaller than
.
Answer:
its basically on where u live is more hot or cold. Is rain and snow common or uncommon. where is this. is it easier to live or harder to live wherever u live at. list 12 different organisms in the place u live. and one fun fact its basically about what u see where u in the city u live
Answer:
The light used has a wavelenght of 4.51×10^-7 m.
Explanation:
let:
n be the order fringe
Ф be the angle that the light makes
d is the slit spacing of the grating
λ be the wavelength of the light
then, by Bragg's law:
n×λ = d×sin(Ф)
λ = d×sin(Ф)/n
λ = (3.2×10^-4 cm)×sin(25.0°)/3
= 4.51×10^-5 cm
≈ 4.51×10^-7 m
Therefore, the light used has a wavelenght of 4.51×10^-7 m.
Answer:
f = 1 m
Explanation:
The magnification of the lens is given by the formula:

where,
M = Magnification = 4
q = image distance = 5 m
p = object distance = ?
Therefore,

Now using thin lens formula:

<u>f = 1 m</u>