Answer:
<h2> $1.50</h2>
Explanation:
Given data
power P= 2 kW
time t= 15 min to hours = 15/60= 1/4 h
cost of power consumption per kWh= 10 cent = $0.1
We are expected to compute the cost of operating the heater for 30 days
but let us computer the energy consumption for one day
Energy of heater for one day= 2* 1/4 = 0.5 kWh
the cost of operating the heater for 30 days= 0.5*0.1*30= $1.50
<u><em>Hence it will cost $1.50 for 30 days operation</em></u>
Answer:
I guess that we want to find how much money you get each week.
We know that the job pays $8.60 per hour.
We know that you work 20 hours per week.
Then the gross pay (the total money that you earn) in a week is 20 times $8.60, or:
20*$8.60 = $172.
Now we know that your employer witholds:
10% + 7.65% + 5% = 22.65%
Then your employer withholds 22.65% of your gross pay.
if the 100% of your gross pay is $172
Then the 22.65% will be:
(22.65%/100%)*$172 = 0.2265*$172 = $38.96
This means that your employer withholds $38.96 of your weekly gross pay.
Then each week you get:
$172 - $38.96 = $133.04
In my view, correct answer should look like this: Although wave power does not produce pollution, some people may not want to invest in it because it is <span>prone to storm damage and limited to particular areas of the ocean.</span>
This question is incomplete; here is the complete question:
Marco is conducting an experiment. He knows the wave that he is working with has a wavelength of 32.4 cm. If he measures the frequency as 3 hertz, which statement about the wave is accurate?
A. The wave has traveled 32.4 cm in 3 seconds.
B. The wave has traveled 32.4 cm in 9 seconds.
C. The wave has traveled 97.2 cm in 3 seconds.
D. The wave has traveled 97.2 cm in 1 second.
The answer to this question is D. The wave has traveled 97.2 cm in 1 second.
Explanation:
The frequency of a wave, which is in this case 3 hertz, represents the number of waves that go through a point during 1 second. According to this, if the frequency of the wave is 3 hertz this means in 1 second there were 3 waves. Moreover, if you multiply the wavelength (32.4cm) by the frequency (3) you will know the distance the wave traveled in 1 second: 32.4 x 3 = 97.2 cm. This makes option D the correct one as the distance in 1 second was 97.2 cm.
Answer:
False
Explanation:
<em>If one of the bulbs is removed from the series, the other bulb will not come on at all.</em>
This is because the removal of one of the bulbs would interrupt the flow of current though the entire circuit.
Hence, that the other one will get brighter if one of two bulbs in a circuit is removed from its socket is not true.