The tension in the string B) It quadruples.
Explanation:
The ball is in uniform circular motion in a horizontal circle, so the tension in the string is providing the centripetal force that keeps the ball in circular motion. So we can write:

where:
T is the tension in the string
m is the mass of the ball
v is the speed of the ball
r is the radius of the circle (the lenght of the string)
In this problem, we are told that the speed of the ball is doubled, so
v' = 2v
Substituting into the previous equation, we find the new tension in the string:

Therefore, the tension in the string will quadruple.
Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly
Rolling friction .<span> the force that slows down the movement of a rolling object</span>
sliding friction.
Sliding friction : The opposing force that comes into play when
one body is actually sliding over the surface of the other body
is called sliding friction. e.g. A flat block is moving over a
horizontal table.
Kinetic or dynamic friction: If the applied force is increased further
and sets the body in motion, the friction opposing the motion is called
kinetic friction
228 - 224 = 4
there is 4g of solute in the solution.
Answer:middle
Explanation:
Because it will make the seasaw balanced
Answer:
1) D, 2) D, 3) B, 4) B, 5) C
Explanation:
You are asked to select the correct answer
1) The conservation of energy is one of the most important principles of physics that allows solving countless problems in life.
the correct answer is D
2) when a body falls, the gravitational potential energy is transformed into kinetic energy and both are transformed into thermal energy
the correct answer is D
3) When the gravitational potential energy is maximum, the kinetic energy is minimum and when the kinetic energy is maximum, the gravitational energy is minimum.
Correct answer B
4) speed is defined by
v = x / t
so the correct answer is B in the SI system
5) when we repeat a measurement several times, the random or statistical errors decrease, therefore the confidence of the measurement increases.
The correct answer is C