To prevent cars from falling, the radius at the top of the circle should be
small such cars inverted at the top remain attached during motion.
Correct response;
The radius of the coaster can be <u>C) 20 m</u>
<h3>Method by which the above option is selected</h3>
Mass of roller coaster car, m = 500 kg
Speed at the top of the circle, v = 20 m/s
Required:
The maximum radius of the circular path the roller coaster car.
Solution:
![\displaystyle Centrifugal \ force, \, F_{c} = \mathbf{\frac{m \cdot v^2}{r}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Centrifugal%20%5C%20force%2C%20%5C%2C%20F_%7Bc%7D%20%3D%20%5Cmathbf%7B%5Cfrac%7Bm%20%5Ccdot%20v%5E2%7D%7Br%7D%7D)
Where;
r = The radius of the circular path.
Weight of the roller coaster car = m·g = The centripetal force
Where;
g = Acceleration due to gravity = 9.81 m/s²
At equilibrium, we have;
Centrifugal force = Centripetal force
![\displaystyle \frac{m \cdot v^2}{r} = \mathbf{ m \cdot g}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bm%20%5Ccdot%20v%5E2%7D%7Br%7D%20%20%3D%20%5Cmathbf%7B%20m%20%5Ccdot%20g%7D)
Therefore;
![\displaystyle r = \mathbf{ \frac{v^2}{g}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20r%20%3D%20%5Cmathbf%7B%20%5Cfrac%7Bv%5E2%7D%7Bg%7D%7D)
Which gives;
![\displaystyle r = \frac{20^2}{9.81} \approx 40.77](https://tex.z-dn.net/?f=%5Cdisplaystyle%20r%20%3D%20%5Cfrac%7B20%5E2%7D%7B9.81%7D%20%5Capprox%2040.77)
The maximum radius for safety of a roller coaster, r ≈ 40.77 meters
![\displaystyle Range \ of \ radius \ of \ the \ circle = \frac{40.77}{4} \leq Radius \ of \ circle \leq 40.77](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Range%20%5C%20of%20%5C%20radius%20%5C%20of%20%5C%20the%20%5C%20circle%20%3D%20%5Cfrac%7B40.77%7D%7B4%7D%20%20%5Cleq%20Radius%20%5C%20of%20%5C%20circle%20%5Cleq%2040.77)
Which gives;
Range of the radius of the circle = 10.2 ≤ Radius of circle ≤ 40.77
The correct option for safety considerations is therefore;
<em>The possible question options are;</em>
<em>A) 5 m B) 10 m C) 20 m D) 40 m E) 80 m</em>
Learn more about centripetal force here:
brainly.com/question/12674230