There are a few ways to do this- unfortunately different fields are better at it than others! Medical research is generally pretty good, some other fields likewise very good, some not as much.
Basically, though, what they do is use standadisation- they agree on the terminology, units of data, statistical measures, and so forth, that will be used in that scientific field. As much as possible, every scientist in the field uses those standards so everyone working in the field should recognise it.
For instance, in clinical trials, there is very good agreement worldwide on what the different metrics we use are- e.g. in cancer research, we usually want to know the 5-year survival rate (meaning the percentage of patients still alive 5 years after diagnosis). So anyone with the right training should be able to pick up a clinical trial report and understand what the results are and what the report is saying.
The car’s velocity as a function of time is b + 2ct and the car’s average velocity during this interval is 0.9 m/s.
<h3>Average velocity of the car</h3>
The average velocity of the car is calculated as follows;
x(t) = a + bt + ct2
v = dx/dt
v(t) = b + 2ct
v(0) = -10.1 m/s + 2(1.1)(0) = -10.1 m/s
v(10) = -10.1 + 2(1.1)(10) = 11.9 m/s
<h3>Average velocity</h3>
V = ¹/₂[v(0) + v(10)]
V = ¹/₂ (-10.1 + 11.9 )
V = 0.9 m/s
Thus, the car’s velocity as a function of time is b + 2ct and the car’s average velocity during this interval is 0.9 m/s.
Learn more about velocity here: brainly.com/question/4931057
#SPJ1
Gregor Mendel was the first person to trace the characteristics of successive generations of a living thing.
Answer:
≈ 2.1 R
Explanation:
The moment of inertia of the bodies can be calculated by the equation
I = ∫ r² dm
For bodies with symmetry this tabulated, the moment of inertia of the center of mass
Sphere
= 2/5 M R²
Spherical shell
= 2/3 M R²
The parallel axes theorem allows us to calculate the moment of inertia with respect to different axes, without knowing the moment of inertia of the center of mass
I =
+ M D²
Where M is the mass of the body and D is the distance from the center of mass to the axis of rotation
Let's start with the spherical shell, axis is along a diameter
D = 2R
Ic =
+ M D²
Ic = 2/3 MR² + M (2R)²
Ic = M R² (2/3 + 4)
Ic = 14/3 M R²
The sphere
Is =
+ M [
²
Is = Ic
2/5 MR² + M
² = 14/3 MR²
² = R² (14/3 - 2/5)
= √ (R² (64/15)
= 2,066 R