Answer:
we have formula of frequency :
frequency(f)= speed of sound(c)/wavelength(λ)
for wavelength we swipe it with frequency as follows
λ=c/f
λ=300,000,000/101,700,000
λ=2.949
answer: derived physical quantities are those quantities that are obtained from the basic physical quantities by multiplication or division and area is one of them
A illustrates 2 resistors in a parallel circuit.
Answer:
<em>d. The sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.</em>
<em></em>
Explanation:
Let us take the momentum of a photon unit as u
we know that the rate of change of momentum is proportional to the force exerted.
For a absorbing surface, the photon is absorbed, therefore the final momentum is zero. From this we can say that
F = (u - 0)/t = u/t
for a unit time, the force is proportional to the momentum of the wave due to its energy density. Therefore,
F = u
For a reflecting surface, the momentum of the wave strikes the sail and changes direction. Since we know that the speed of light does not change, then the force is proportional to
F = (u - (-u))/t = 2u/t
just as the we did above, it becomes
F = 2u.
From this we can see that the force for a reflective sail is twice of that for an absorbing sail, and we know that the pressure is proportional to the force for a given area. From these, we conclude that <em>the sail should be reflective because in this case the momentum transferred to the sail per unit area per unit time is larger than for absorbing sail, therefore the radiation pressure is larger for the reflective sail.</em>
<em></em>
Answer:
b) field is zero, c) the magnetic field does not change in intensity or direction
e) M = -H = Bo /μ₀
, g) M = 0
Explanation:
Part b
superconductors are formed by so-called Coper pairs that are electrons linked through a distortion in the network, this creates that they must be treated as an entity so we have an even number of charge carriers and the material must behave with diamagnetic , Meissner effect, consequently the magnetic field inside its superconductor is zero
the correct answer is Zero
Part c
outside the superconducting cylinder the magnetic field does not change in intensity or direction
Part E
Magnetization is defined by the equation
B = μ₀ (H + M)
with field B it is zero inside the superconductors
M = -H = Bo /μ₀
where Bo is the magnetic induction in the normal state
Part g
As outside the cylinder there is no material zero magnetization
M = 0