1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa [96]
3 years ago
6

If a 580 N net force acts on a 40 kg what will the acceleration of the car be

Physics
2 answers:
myrzilka [38]3 years ago
7 0

Answer:

I think u have to do 580N times 40KG

tia_tia [17]3 years ago
5 0

Answer: DONT MULTIPLY, YOU DIVIDE THEM

Explanation:

F = mass x acceleration

580 N = (40 kg)(a)

580/40 = 14.5

a = 14.5 m/s²

You might be interested in
An athlete kicks a soccer ball that starts at rest so that it leaves their foot with a speed of 10m/s from the top o f a rectang
kirza4 [7]

Answer:

a=500m/s^2

Explanation:

We need only to apply the definition of acceleration, which is:

a=\frac{v_f-v_i}{t_f-t_i}

In our case the final velocity is v_f=10m/s, the initial velocity is v_i=0m/s since it departs from rest, the final time is t_f=0.02s and the initial time we are considering is t_i=0s

So for our values we have:

a=\frac{10m/s-0m/s}{0.02s-0s}=500m/s^2

3 0
3 years ago
1.A Radio station broadcasts modern song on medium wave 350 Hz every day at ten o’clock in the morning. The velocity of radio wa
love history [14]

Answer:

ans \:  = \boxed{{4.8 \times 10}^{ - 4}  Hz}

Explanation:

given \to \\  f_{r} = 350 \:  \\ v_{r} =  {3 \times 10}^{8}  \\ but \to \\ v = f \gamma   \to \:  \gamma  =  \frac{v}{f}  : hence \to \\  \gamma _{r} =  \frac{v_{r}}{f_{r}}   =  \frac{3 \times 10^{8} }{350}   =  \boxed{857,142.85714 \: m}\\ therefore \to \\ given \to \\  f_{w} = water \: frequency = \:  \boxed{  ?}\:  \\ v_{w} =  14 50 \\ but \to \\ v = f \gamma   \to \:  \gamma  =  \frac{v}{f}  : hence \to \\  \gamma _{w} =  \frac{v_{w}}{f_{w}}   =  \frac{1}{100}  \times \gamma _{r}  =  \frac{1}{100}  \times 857,142.85714  \\\gamma _{w}  =  \boxed{8,571.4285714 \: m} : hence \to \:  \\ f_{w} =  \frac{v_{w}}{ \gamma _{w}}  =  \frac{1450}{8,571.4285714}  =  \boxed{0.1691666667} \\ if \: the \: number \: of \: times = \boxed{ x} \\ f_{r} (x)=f_{w} \\ (x) =  \frac{f_{w}}{f_{r}}  =  \frac{0.1691666667}{350}  = 0.0004833333 \\ hence \to \\ the  \: frequency  \: of \:  the \:  radio  \: wave  \: is \to \:   \boxed{{4.8 \times 10}^{ - 4}  }\:  \\ that  \: of  \: the \:  wave  \: created  \: in  \: the  \: water.

♨Rage♨

8 0
3 years ago
A horizontal sheet of negative charge has a uniform electric field E = 3000N/C. Calculate the electric potential at a point 0.7m
vesna_86 [32]

Answer:

Electric potential, E = 2100 volts

Explanation:

Given that,

Electric field, E = 3000 N/C

We need to find the electric potential at a point 0.7 m above the surface, d = 0.7 m

The electric potential is given by :

V=E\times d

V=3000\ N/C\times 0.7\ m

V = 2100 volts

So, the electric potential at a point 0.7 m above the surface is 2100 volts. Hence, this is the required solution.

6 0
3 years ago
A long, straight wire lies in the plane of a circular coil with a radius of 0.018 m. the wire carries a current of 5.6 a and is
iris [78.8K]
(a) The net flux through the coil is zero.
In fact, the magnetic field generated by the wire forms concentric circles around the wire. The wire is placed along the diameter of the coil, so we can imagine as it divides the  coil into two emisphere. Therefore, the magnetic field of the wire is perpendicular to the plane of the coil, but the direction of the field is opposite in the two emispheres. Since the two emispheres have same area, then the magnetic fluxes in the two emispheres are equal but opposite in sign, and so they cancel out when summing them together to find the net flux.

(b) If the wire passes through the center of the coil but it is perpendicular to the plane of the wire, the net flux through the coil is still zero.
In fact, the magnetic field generated by the wire forms concentric lines around the wire, so it is parallel to the plane of the coil. But the flux is equal to
\Phi = BA \cos \theta
where \theta is the angle between the direction of the magnetic field and the perpendicular to the plane of the coil, so in this case \theta=90^{\circ} and so the cosine is zero, therefore the net flux is zero.
5 0
3 years ago
Why is the contribution of the wavelets lying on the back of secondary wave front zero?​
Tresset [83]

Answer:

The contribution of the wavelets lying on the back of the wave front is zero because of something known as the Obliquity Factor. It is assumed that the amplitude of the secondary wavelets is not independent of the direction of propagation, Sources: byju's.com

3 0
2 years ago
Read 2 more answers
Other questions:
  • How much energy is used by a 900 w microwave that operates for 4 minutes ?
    6·1 answer
  • Which of the preceding statements is/are true?A) Helioseismology is the study of the differential rotation and magnetic field of
    5·1 answer
  • Who clarified the photoelectric effect?
    5·1 answer
  • The graph shows two runners participating in a race.
    11·2 answers
  • A plane flies 470 km east from city A to city B in 45.0 min and then 966 km south from city B to city C in 1.50 h. For the total
    7·1 answer
  • Which of the following is considered an IT career? Financial Analyst Office Manager Structural Engineer Database Administrator
    10·2 answers
  • Why does the hood of a car heat up after the car has been running for a while? A) According to the fourth law of thermodynamics,
    11·2 answers
  • The centripetal force acting on a satellite in orbit
    8·2 answers
  • What happens to the heat energy when you increase the length of an object​
    14·1 answer
  • How to calculate specific heat.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!