Answer:
elastic partial width is 2.49 eV
Explanation:
given data
ER E = 250 eV
spin J = 0
cross-section magnitude σ = 1300 barns
peak P = 20ev
to find out
elastic partial width W
solution
we know here that
σ = λ²× W / ( E × π × P ) ...................1
put here all value
σ = (0.286)² × W ×
/ ( 250 × π × 20 )
1300 ×
= (0.286)² × W ×
/ ( 250 × π × 20 )
solve it and we get W
W = 249.56 ×
so elastic partial width is 2.49 eV
Answer:
a) wavelength = 656.3 nm
b) the value of Rydberg's constant for this measurement is 1.097 × 10⁷ m⁻¹
Explanation:
Given that;
angle of diffraction Θₓ = 22.78°
incident angle Θ₁ = 0
slit separation d = 5900 lines per cm = 1/5900 cm = 10⁻²/5900 m = 0.01/5900 m
order of diffraction n = 1
wavelength λ = ?
to find the wavelength, we use the expression
λ = d (sinΘ₁ + sinΘₓ) / n
To find the wavelength λ;
λ = 0.01/5900 × (sin0 + sin22.78° )
λ = 6.5626 × 10⁻⁷ m
λ = 656.3 x 10⁻⁹ m
∴ λ = 656.3 nm
b)
According Balnur's series spectral lines; n₁ = 3, n₂ = 2 and
λ = R [ 1/n₂² - 1/n₁²]
where R is Rydberg's constant
from λ = R [ 1/n₂² - 1/n₁²]
R = 1/λ [n₂²n₁² / n₁² - n₂²]
R = 10⁹/ 656.3 [ 9 × 4 / 9 - 4 ]
R = 1.097 × 10⁷ m⁻¹
Therefore the value of Rydberg's constant for this measurement is 1.097 × 10⁷ m⁻¹
Answer:
The correct answer is;
The magnitude of the force is 35.12 N
Explanation:
To solve the question, we note that the friction is zero and the force causes motion of a stationary mass
One of the equations of motion is required such as
v² = u² + 2× a× s
Where
v = Final velocity = 5.93 m/s
u = Initial velocity = 0 m/s , object at rest
a = acceleration
s = distance moved = 32 meters
But v = Distance/Time = 32 m /5.4 s = 5.93 m/s
Therefore
5.93² = 2×a×32
or a = 35.12/ 64 = 0.55 m/s²
Therefore Force F = Mass m × Acceleration a
Where mass m = 64 kg
Therefore F = 64 kg×0.55 m/s² = 35.12 N
It's a virtual force ... one that seems to be there but isn't really there.
When something tries to fly or flow straight, through a rotating neighborhood, it ends up flying or flowing in a curved path, AS IF there were a force acting on it to make it curve. THAT apparent force is the Coriolis force.
It's what makes air, flowing away from high pressure or into low pressure, form the big rotating pressure systems on the rotating Earth.