A catalyst is a chemical that increases the rate of a chemical reaction without itself being changed by the reaction. The fact that they aren't changed by participating in a reaction distinguishes catalysts from substrates, which are the reactants on which catalysts work. Enzymes catalyze biochemical reactions.
Answer:
N2
Explanation:
We use the ideal gas equation to calculate the number of moles of the diatomic gas. Then from the number of moles we can get
Given:
P = 2atm
1atm = 101,325pa
2atm = 202,650pa
T = 27 degrees Celsius = 27 + 273.15 = 300.15K
V = 2.2L
R = molar gas constant = 8314.46 L.Pa/molK
PV = nRT
Rearranging n = PV/RT
Substituting these values will yield:
n = (202,650 * 2.2)/(8314.46* 300.15)
n = 0.18 moles
To get the molar mass, we simply divide the mass by the number of moles.
5.1/0.18 = 28.5g/mol
This is the closest to the molar mass of diatomic nitrogen N2.
Hence, the gas is nitrogen gas
Answer: The mass percentage of
is 5.86%
Explanation:
To calculate the mass percentage of
in the sample it is necessary to know the mass of the solute (
in this case), and the mass of the solution (pesticide sample, whose mass is explicit in the letter of the problem).
To calculate the mass of the solute, we must take the mass of the
precipitate. We can establish a relation between the mass of
and
using the stoichiometry of the compounds:

Since for every mole of Tl in
there are two moles of Tl in
, we have:

Using the molar mass of
we have:

Finally, we can use the mass percentage formula:

Mass number - # of protons = #neutrons, so I would say the answer is 5