The internal energy of the ideal gas is zero
The change in internal energy for an isothermal process is zero.
An ideal gas has no interactions between particles, therefore no intermolecular forces.
pressure change at constant temperature does not change the internal energy.
Adiabatic throttling expansion has less work done and lower heat flow.
That lower the internal energy.
The temperature decreases during the adiabatic expansion
Hence the internal energy of the ideal gas is zero
Learn more about the ideal gas on
brainly.com/question/17136449
#SPJ4
The ratios which are needed to determine the mass of oxygen produced from the decomposition of 10 grams of potassium chlorate are;
- 31.998 g O2 : 1 mole O2
- 3 mole O2 : 2 mole KClO3
- 112.55 g KClO31 mole KClO3
From stoichiometry;
- We can conclude that according to the reaction;
3 moles of oxygen requires 2 moles of KClO3 to be produced.
And from molar mass analysis;
- 31.998 g O2 is equivalent to 1 mole O2
- O2112.55 g KClO3 is equivalent to 1 mole KClO3
Read more:
brainly.com/question/9920155
Two atoms having a double covalent bond
share 2 electrons each.
for example, H-H
each hydrogen atom shares one electron with another hydrogen atom to attain helium configuration or the nearest noble gas configuration.
Answer:
An ionic bond forms between two ions of opposite charges. In ionic bonding, electrons transfer from one atom to another. The elements take on either a negative or positive charge. Ions are another name for charged atoms. Some elements are electropositive, and some are electronegative.
Hope this helps!