Answer:
D because i did this last week and got it right.
Electron affinity is the energy released when an electron is accepted by a neutral atom forming a negative ion. Chlorine has the higher electron affinity because it readily accepts an electron to become more stable. On the other hand, sodium have to give up an electron to complete its valence shell.
The molecular formula for compound is
mass of compound is 0.670 g.
To calculate number of atoms first calculate number of moles in the compound as follows:

Molar mass of
is 283.886 g/mol, thus,

Thus, number of mole of
is 0.00236 mol.
From the molecular formula 1 mole of
has 2 mol of P (phosphorus) and 5 mol of O (oxygen).
Thus, number of moles of P and O in 0.00236 mol of
will be:

Similarly,

Now, in 1 mol of an element there are
atoms.
Number of atoms of P will be:

Similarly, number of atoms of O will be:

Total number of atoms will be sum of number of atoms of P and O:

Therefore, total number of atoms in
will be
.
Answer:
2.47L
Explanation:
Using the combined gas law equation as follows:
P1V1/T1= P2V2/T2
Where;
P1 = initial pressure (mmHg)
P2 = final pressure (mmHg)
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question;
P1 = 705mmHg
P2 = 760mmHg (STP)
V1 = 3.00L
V2 = ?
T1 = 35°C = 35 + 273 = 308K
T2 = 273K (STP)
Using P1V1/T1= P2V2/T2
705 × 3/308 = 760 × V2/273
2115/308 = 760V2/273
Cross multiply
308 × 760V2 = 2115 × 273
234,080V2 = 577,395
V2 = 577,395 ÷ 234,080
V2 = 2.47L
Answer:
KOH and H₂SO₄
Explanation:
Neutralization reaction:
It is the reaction in which acid and base react with each other and produce salt and water.
For example:
2KOH + H₂SO₄ → K₂SO₄ + 2H₂O
1. Potassium hydroxide and sulfuric acid react to produce potassium sulfate salt and water.
2. Potassium hydroxide and phosphoric acid react to produce potassium phosphate and water.
H₃PO₄ + 3KOH → K₃PO₄ + 3H₂O
3. Phosphoric acid sodium hydroxide react to produce sodium phosphate and water.
H₃PO₄ + 3NaOH → Na₃PO₄ + 3H₂O