The period of the wave is 4.35 ms. The sound waves are called longitudinal waves
Explanation:
The period of a wave is related to its frequency by the equation:

where
T is the period
f is the frequency
For the bee in this problem, the frequency of the sound wave emitted by it is

Therefore, the period of the sound wave is

The sound wave is a type of wave called longitudinal wave. In longitudinal waves, the oscillation of the medium occurs in a direction parallel to the direction of motion of the wave: therefore in a sound wave, the particle of the medium (air, in this case) oscillate back and forth along the direction of propagation of the wave, forming alternating areas of higher density of particles (called compressions) and of lower density of particle (called rarefactions).
The other type of wave, instead, is called transverse wave. In a transverse wave, the oscillation of the wave occurs in a direction perpendicular to the direction of motion of the wave. An example of transverse waves are the electromagnetic waves, which consists of electric field and magnetic fields that vibrate in a plane perpendicular to the direction of motion of the wave itself.
Learn more about waves:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
Answer:
The ball will have a kinetic energy of 0.615 Joules.
Explanation:
Use the kinetic energy formula

The kinetic energy at the moment of leaving the hand will be 0.615 Joules. (From there on, as it ball is traveling upwards, this energy will be gradually traded off with potential energy until the ball's velocity becomes zero at the apex of the flight)
Answer:

Explanation:
Velocity of the ship is given as

the direction of the velocity of the ship is making an angle of 11 degree with the current
so we will have two components of the velocity
1) along the direction of the current
2) perpendicular to the direction of the current
so here we know that the component of the ship velocity along the direction of the current is given as



Since power = work done/time, 60= work done/120, work done = 120*60 = 7200. So,work done = 7200N (Newton).
I'm not sure if you're supposed to convert the seconds to time.