Answer: A) More base is likely required to reach the endpoint for the diprotic acid than for the monoprotic acid under these conditions
Explanation:
The monoprotic acid (HA) has a valency of 1 and diprotic acid
has a valency of 2.
As the concentration and volume of the diprotic acid and the monoprotic acids are equal.
The neutralization reaction for monoprotic acid is:

The neutralization reaction for diprotic acid is:

Thus more number of moles of base are required for neutralization of diprotic acid and thus the volume required will be more as concentration and volume of the diprotic acid and the monoprotic acids are equal.
Answer:
1) positive
2) carbocation
3) most stable
4) faster
Explanation:
A common test for the presence of alcohols can be achieved using the Lucas reagent. Lucas reagent is a mixture of concentrated hydrochloric acid and zinc chloride.
The reaction of Lucas reagent reacts with alcohols leading to the formation of an alkyl chloride. Since the reaction proceeds via a carbocation mechanism, tertiary alcohols give an immediate reaction. Once a tertiary alcohol is mixed with Lucas reagent, the solution turns cloudy almost immediately indicating an instant positive reaction.
Secondary alcohols may turn cloudy within five minutes of mixing the solutions. Primary alcohols do not significantly react with Lucas reagent obviously because they do not form stable carbocations.
Therefore we can use the Lucas reagent to distinguish between primary, secondary and tertiary alcohols.
Given :
Number of molecules of hydrogen peroxide, N = 4.5 × 10²².
To Find :
The mass of given molecules of hydrogen peroxide.
Solution :
We know, 1 mole of every compound contains Nₐ = 6.022 × 10²³ molecules.
So, number of moles of hydrogen peroxide is :

Now, mass of hydrogen peroxide is given as :
m = n × M.M
m = 0.0747 × 34 grams
m = 2.54 grams
Hence, this is the required solution.
No it does not effect the temperature of boiling point