Answer:
Decreasing the concentration of N2O3
Explanation:
This is because the products on the right of the reaction occupy more space. One (1) mole of NO and another mole of NO2 will occupy more space than the one (1) mole of N2O3. Therefore decreasing the concentration of N2O3 will shift the reaction to the right because the products will have more space to occupy – hence favoring equilibrium.
CaCl2 +Na2CO3 ====>Nacl+CaCO3
In order to find out the %mass dolomite in the soil,
calculate for the mass of dolomite using the information given from the
titration procedure. You would need to multiply 57.85 ml with 0.3315 M HCl and
you would get the amount of HCl in millimoles. Then multiply the amount of HCl
with 1/2 (given that for every 1 mol of dolomite, 2 mol of HCl would be
needed). Convert the amount of dolomite to mass by multiplying the millimoles
with the molecular weight which is 184.399. Then convert the mass to grams
which is 1.768 grams. Divide the mass of dolomite (1.768 grams) with the weight
of soil sample. The % mass is 7.17.
Answer:
The protonated form is predominant when aspirin is absorbed more readily. The ratio of conjugate base to acid is 1 to 100.
Explanation:
Aspirin is more readily absorbed when it is protonated, that is when pH is lower than pKa (<em>more H⁺ available in the medium</em>). We can confirm this using Henderson-Hasselbalch equation for pH = 1.5:

When aspirin is absorbed more readily the ratio of conjugate base to acid is 1 to 100, being the acid the <em>predominant</em> form.
Answer: 4 molL-1
Explanation:
Detailed solution is shown in the image attached. The number of moles of NaCl is first obtained. Since the molarity must be in units of molL-1, the volume is divided by 1000 and the formula stated in the solution is applied and the answer is given to one significant figure.