B----------- oxide is the correct answer
Answer:
Option C. Triple the number of moles
Explanation:
From the ideal gas equation:
PV = nRT
Where:
P is the pressure
V is the volume
n is the number of mole
R is the gas constant
T is the absolute temperature.
Making V the subject of the above equation, we have:
PV = nRT
Divide both side by P
V = nRT / P
Thus, we can say that the volume (V) is directly proportional to both the number of mole (n) and absolute temperature (T) and inversely proportional to the pressure (P). This implies that and increase in either the number of mole, the absolute temperature and a decrease in the presence will cause the volume to increase.
Thus, the correct option is option C triple the number of moles. This can further be seen as illustrated below:
Initial volume (V1) = 12 L
Initial mole (n1) = 0.5 mole
Final mole (n2) = triple the initial mole = 3 × 0.5 = 1.5 mole
Final volume (V2) =?
From:
V = nRT / P, keeping T and P constant, we have:
V1/n1 = V2/n2
12/0.5 = V2/1.5
24 = V2/1.5
Cross multiply
V2 = 24 × 1.5
V2 = 36 L.
Thus Option C gives the correct answer to the question.
Answer:
The correct answer is - A. Each organ does part of a larger job.
Explanation:
An organ in an organ system of an individual organism is the group of similar tissues that collectively perform a common function in the organ system and play their part in a larger job.
A group of organs makes an organ system to perform a particular but large function in the organism for its survival. An example of the organ in an organ system is the heart in the cardiovascular system. The heart is an organ that pumps the blood out of the heart to the various part of the cardiovascular system such as lungs, arteries, and veins so it can take nutrients and oxygen to various parts carried by the blood.
Answer:

Explanation:
Hello there!
In this case, since these problems about gas mixtures are based off Dalton's law in terms of mole fraction, partial pressure and total pressure, we can write the following for hydrogen, we are given its partial pressure:

And can be solved for the total pressure as follows:

However, we first calculate the mole fraction of hydrogen by subtracting that of nitrogen to 1 due to:

Then, we can plug in to obtain the total pressure:

Regards!