Answer:
the mass required to inflate a 72 L bag is 191.491 g
Explanation:
reaction:
conditions:
- V = 72.0 L
- STP: P = 1 atm ∧ T = 298 K
gas law:
- PV = RTn
- R = 0.082 atm * L / K * mol
⇒ n = PV / RT
⇒ n = ((1 atm) * ( 72.0 L)) / (0.082 atm*L / K*mol) * (298 K)
⇒ n = 2.946 mol
⇒ m = n * Mw = ( 2.946 mol ) * ( 64.99 g/mol)
⇒ m = 191.491 g
Answer: Yes, they do.
Explanation: Neutrons and protons are made up of smaller subatomic particles. When neutons and protons get get close to each other they convert particles and bond together. This occurance is called The Strong Force.
This is possible because of the emulsifying properties present in soap. This property is caused by the hydrophilic end and hydrophobic end of a soap molecule. Grease is able to be dissolved in the water because it is attracted to the hydrophobic end of the soap molecule.
A solute dissolves in excess solvent to form a solution:
solute + solvent → solution
<h3>What is the Enthalpy and their relation ? </h3>
A thermodynamic system's enthalpy, which is one of its properties, is calculated by adding the system's internal energy to the product of its pressure and volume. It is a state function that is frequently employed in measurements of chemical, biological, and physical systems at constant pressure, which the sizable surrounding environment conveniently provides.
A solution is a uniform mixture of two or more components that can exist in the solid, liquid, or gas phases. The amount of heat that is released or absorbed during the dissolving process is known as the enthalpy change of solution (at constant pressure).
There are two possible values for this enthalpy of solution ( H solution ) : positive (endothermic) and negative (exothermic). It is most straightforward to visualize a hypothetical three-step process occurring between two substances while trying to grasp the enthalpy of solution. The solute is one substance; let's call it A. The solvent is the second component; let's call it B.
The initial procedure exclusively affects the solute A and calls for disabling all intramolecular forces holding it together. This indicates that the molecules of the solute separate. This process' enthalpy is known as H1. Since breaking interactions requires energy, this is always an endothermic process, hence H1>0.
Their sign will be opposite.
To know more about Enthalpy please click here : brainly.com/question/14047927
#SPJ4
Each element absorbs light at specific wavelengths unique to that atom. When astronomers look at an object's spectrum, they can determine its composition based on these wavelengths. The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy.
hope this helps you! :-)