Answer:
Velocity, v = 0.164 m/s
Explanation:
We have,
Frequency of wave, f = 0.04 Hz
Wavelength, 
It is required to find the velocity of a water wave. The speed of any wave is given in terms of wavelength and frequency. Its formula is :

So, the velocity of a water wave is 0.164 m/s.
To calculate we use the formula for a magnetic force in a current-carrying wire expressed as the product of the current, magnetic field and the length of the wire.
F = I x L x B
where F is the force on the wire, I is the current flowing on the wire, L is the length of the wire and B is the magnetic field.
F = 10.0 A x 1.2 m x 0.050 T
F = 0.60 N
Kinetic energy is energy of motion. Pick choice-A, at the top of the swing, where she stops moving & then goes the other way.
Answer:
1.25 m/s
Explanation:
Given,
Mass of first ball=0.3 kg
Its speed before collision=2.5 m/s
Its speed after collision=2 m/s
Mass of second ball=0.6 kg
Momentum of 1st ball=mass of the ball*velocity
=0.3kg*2.5m/s
=0.75 kg m/s
Momentum of 2nd ball=mass of the ball*velocity
=0.6 kg*velocity of 2nd ball
Since the first ball undergoes head on collision with the second ball,
momentum of first ball=momentum of second ball
0.75 kg m/s=0.6 kg*velocity of 2nd ball
Velocity of 2nd ball=0.75 kg m/s ÷ 0.6 kg
=1.25 m/s
The answer is B friction force