1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
My name is Ann [436]
2 years ago
5

the deflection angle of the laser beam as it exits the prism is 22. 6º. If the prism had been made of glass instead of polystyre

ne plastic, what would the deflection angle have been?.
Physics
1 answer:
inessss [21]2 years ago
4 0
Thirty three degrees
You might be interested in
An object is held at an unknown height above Earth’s surface, where the acceleration due to gravity of the object is considered
Aleks04 [339]

Answer:

Options A and B.

Explanation:

Gravitational acceleration, initial height, intial speed and time are required to determine final speed. The option D is incorrect, since speed varies in time. Option C is dimentionally wrong.

The correct strategy is calculating the initial height from option B. Later, substituting time in equation A to derive an expression of the final velocity in terms of position. Hence, the required equations are options A and B.

7 0
3 years ago
The astronomical unit (AU) is defined as the mean center-to-center distance from Earth to the Sun, namely 1.496x10^(11) m. The p
Rudiy27

Answer:

a) How many parsecs are there in one astronomical unit?

4.85x10^{-6}pc

(b) How many meters are in a parsec?

3.081x10^{16}m

(c) How many meters in a light-year?

9.46x10^{15}m

(d) How many astronomical units in a light-year?

63325AU

(e) How many light-years in a parsec?

3.26ly

Explanation:

The parallax angle can be used to find out the distance using triangulation. Making a triangle between the nearby star, the Sun and the Earth, knowing that the distance between the Earth and the Sun (1.496x10^{11} m) is defined as 1 astronomical unit:

\tan{p} = \frac{1AU}{d}

Where d is the distance to the star.

Since p is small it can be represent as:

p(rad) = \frac{1AU}{d}  (1)

Where p(rad) is the value of in radians

However, it is better to express small angles in arcseconds

p('') = p(rad)\frac{180^\circ}{\pi rad}.\frac{60'}{1^\circ}.\frac{60''}{1'}

p('') = 2.06x10^5 p(rad)

p(rad) = \frac{p('')}{2.06x10^5} (2)

Then, equation 2 can be replace in equation 1:

\frac{p('')}{2.06x10^5} = \frac{1AU}{d}  

\frac{d}{1AU} = \frac{2.06x10^5}{p('')}  (3)

From equation 3 it can be see that 1pc = 2.06x10^5 AU

<em>a) How many parsecs are there in one astronomical unit? </em>

1AU . \frac{1pc}{2.06x10^5AU} ⇒ 4.85x10^{-6}pc

<em>(b) How many meters are in a parsec? </em>

2.06x10^{5}AU . \frac{1.496x10^{11}m}{1AU} ⇒ 3.081x10^{16}m

<em>(c) How many meters in a light-year? </em>

To determine the number of meters in a light-year it is necessary to use the next equation:

x = c.t

Where c is the speed of light (c = 3x10^{8}m/s) and x is the distance that light travels in 1 year.

In 1 year they are 31536000 seconds

x = (3x10^{8}m/s)(31536000s)

x = 9.46x10^{15}m

<em>(d) How many astronomical units in a light-year?</em>

9.46x10^{15}m . \frac{1AU}{1.496x10^{11}m} ⇒ 63325AU

<em>(e) How many light-years in a parsec?</em>

2.06x10^{5}AU . \frac{1ly}{63235AU} ⇒ 3.26ly

5 0
3 years ago
On earth which force is 10 to slow an object down
ololo11 [35]

Answer:

gravity

Explanation:

6 0
3 years ago
Any energy transformation involves the loss of some energy as
ss7ja [257]
Any energy transformation involves the loss of some energy as B. Heat.
5 0
3 years ago
Read 2 more answers
Each of the gears a and b has a mass of 675 g and has a radius of gyration of 40 mm, while gear c has a mass of 3. 6 kg and a ra
navik [9.2K]

9.87 seconds

The time required for this system to come to rest is equal to 9.87 seconds.

We have the following data:

Mass of gear A = 675 g to kg = 0.675 kg.

Radius of gear A = 40 mm to m = 0.04 m.

Mass of gear C = 3.6 kg.

Radius of gear C = 100 mm to m = 0.1 m.

How can I calculate the time needed?

We would need to figure out the moment of inertia for gears A and C in order to compute the time needed for this system to come to rest.

Mathematically, the following formula can be used to determine the moment of inertia for a gear:

I = mr²

Where:

m is the mass.

r is the radius.

We have, For gear A:

I = mr²

I = 0.675 × 0.04²

I = 0.675 × 0.0016

I = 1.08 × 10⁻³ kg·m².

We have, For gear C:

I = mr²

I = 3.6 × 0.1²

I = 3.6 × 0.01

I = 0.036 kg·m².

The initial angular velocity of gear C would therefore be converted as follows from rotations per minute (rpm) to radians per second (rad/s):

ωc₁ = 2000 × 2π/60

ωc₁ = 4000π/60

ωc₁ = 209.44 rad/s.

Also, the initial angular velocity of gears A and B is given by:

ωA₁ = ωB₁ = rc/rA × (ωc₁)

ωA₁ = ωB₁ = 0.15/0.06 × (209.44)

ωA₁ = ωB₁ = 2.5 × (209.44)

ωA₁ = ωB₁ = 523.60 rad/s.

Taking the moment about A, we have:

I_A·ωA₁ + rA∫F_{AC}dt - M(f)_A·t = 0

On Substituting the given parameters into the formula, we have;

(1.08 × 10⁻³)·(523.60) + 0.06∫F_{AC}dt - 0.15t = 0

0.15t - 0.06∫F_{AC}dt = 0.56549   ----->equation 1.

Similarly, the moment about B is given by:

0.15t - 0.06∫F_{BC}dt = 0.56549    ------>equation 2.

Note: Let x = ∫F_{BC}dt + ∫F_{AC}dt

Adding eqn. 1 & eqn. 2, we have:

0.3t - 0.06x = (0.56549) × 2

0.3t - 0.06x = 1.13098  ------>equation 3.

Taking the moment about A, we have:

Ic·ωc₁ - rC∫F_{AC}dt - rC∫F_{BC}dt - Mc(f)_A·t = 0

0.036(209.44) - 0.3t - 0.15(∫F_{BC}dt + ∫F_{AC}dt) = 0

0.3t + 0.15x = 7.5398    ------->equation 4.

Solving eqn. 3 and eqn. 4 simultaneously, we have:

x = 30.5 Ns.

Time, t = 9.87 seconds.

To learn more about moment of inertia visit:

brainly.com/question/15246709

#SPJ4

6 0
2 years ago
Other questions:
  • The ____ is a line drawn at a right angle to a barrier. a. normal c. node b. ray d. wave front
    10·1 answer
  • Two straight roads diverge at an angle of 45°. Two cars leave the intersection at 2:00 P.M., one traveling at 32 mi/h and the ot
    7·1 answer
  • a bottle lying on the windowsill falls off and takes 4.95 seconds to reach the ground. the distance from the windowsill to the g
    10·2 answers
  • The amount of light a star gives off is called its.....
    5·1 answer
  • 2 strings both vibrate at exactly 220 Hz. The tension in one of them is then decreased sightly. As a result, 3 beats per second
    14·1 answer
  • You drive to the city at an average speed of 40 km/h and return at an average speed of 60 km/h. Find your average speed for the
    6·1 answer
  • A wire 0.50 m long carrying a current of 16.0 A is at right angles to a 0.20 T magnetic field. How strong a force acts on the wi
    11·1 answer
  • Protons are______<br> charged particles.
    8·2 answers
  • A mouse ran 25 meters in 5 seconds, stopped for 10 seconds to eat a piece of cheese, and finally ran another 5 seconds a distanc
    9·1 answer
  • Multiple choice: Sunspots appear dark because
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!