<h3>
Answer:</h3>
1.69 g Mg₃N₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Unbalanced] Mg + N₂ → Mg₃N₂
[RxN - Balanced] 3Mg + N₂ → Mg₃N₂
[Given] 1.22 g Mg
[Solve] grams Mg₃N₂
<u>Step 2: Identify Conversions</u>
[RxN] 3 mol Mg → Mg₃N₂
[PT] Molar Mass of Mg - 24.31 g/mol
[PT] Molar Mass of N - 14.01 g/mol
Molar Mass of Mg₃N₂ - 3(24.31) + 2(14.01) = 100.95 g/mol
<u>Step 3: Stoich</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
1.68873 g Mg₃N₂ ≈ 1.69 g Mg₃N₂
Carbonated drinks have the air under pressure so that carbon bubbles are forced into the drink, keeping it carbonated. So when you open a can, the air under pressure in the can comes out of the can at a high speed, making a "whooshing" sound. The gas law that applies to this concept is the Boyle's Law (PV=k or P1V1=P2V2).
I’m not sure what the answer is but I hope someone can help you
Gravitational force will increase with greater mass
Answer:
The answer to your question is 280 g of Mg(NO₃)₂
Explanation:
Data
Efficiency = 30.80 %
Mg(NO₃)₂ = ?
Magnesium = 147.4 g
Copper (II) nitrate = excess
Balanced Reaction
Mg + Cu(NO₃)₂ ⇒ Mg(NO₃)₂ + Cu
Reactants Elements Products
1 Mg 1
1 Cu 1
2 N 2
6 O 6
Process
1.- Calculate the theoretical yield
Molecular weight Mg = 24
Molecular weight Mg(NO₃)₂ = 24 + (14 x 2) + (16 x 6)
= 24 + 28 + 96
= 148 g
24 g of Mg -------------------- 148 g of Mg(NO₃)₂
147.4 g of Mg ------------------- x
x = (147.4 x 148) / 24
x = 908.96 g of Mg(NO₃)₂
2.- Calculate the Actual yield
yield percent = 
Solve for actual yield
Actual yield = Yield percent x Theoretical yield
Substitution
Actual yield =
x 908.96
Actual yield = 279.95 ≈ 280g