Answer:
In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction.
Explanation:
Answer: -33.3 * 10^9 C/m^2( nC/m^2)
Explanation: In order to solve this problem we have to use the gaussian law, the we have:
Eoutside =0 so teh Q inside==
the Q inside= 4.6 nC/m*L + σ *2*π*b*L where L is the large of the Gaussian surface and b the radius of the shell.
Then we simplify and get
σ= -4.6/(2*π*b)= -33.3 nC/m^2
Answer:
Given that
speed u=4*10^6 m/s
electric field E=4*10^3 N/c
distance b/w the plates d=2 cm
basing on the concept of the electrostatices
now we find the acceleration b/w the plates to find the horizontal distance traveled by the electron when it hits the plate.
acceleration a=qE/m=
=
m/s
now we find the horizontal distance traveled by electrons hit the plates
horizontal distance
![X=u[2y/a]^{1/2}](https://tex.z-dn.net/?f=X%3Du%5B2y%2Fa%5D%5E%7B1%2F2%7D)
=![4*10^6[2*2*10^{-2}/7*10^{14}]^{1/2}](https://tex.z-dn.net/?f=4%2A10%5E6%5B2%2A2%2A10%5E%7B-2%7D%2F7%2A10%5E%7B14%7D%5D%5E%7B1%2F2%7D)
=
= 3 cm
I'm not sure, I think it's option A.
Let me know if I'm wrong!
<span>radiation, hydrogen, and helium </span>