Answer:
a) I = 3.63 W / m²
, b) I = 0.750 W / m²
Explanation:
The intensity of a sound wave is given by the relation
I = P / A = ½ ρ v (2π f
)²
I = (½ ρ v 4π² s_{max}²) f²
a) with the initial condition let's call the intensity Io
cte = (½ ρ v 4π² s_{max}²)
I₀ = cte s² f₀²
I₀ = cte 10 6
If frequency is increase f = 2.20 10³ Hz
I = constant (2.20 10³) 2
I = cte 4.84 10⁶
let's find the relationship of the two quantities
I / Io = 4.84
I = 4.84 Io
I = 4.84 0.750
I = 3.63 W / m²
b) in this case the frequency is reduced to f = 0.250 10³ Hz and the displacement s = 4 s or
I = cte (f s)²
I = constant (0.250 10³ 4)²
I = cte 1 10⁶
the relationship
I / Io = 1
I = Io
I = 0.750 W / m²
Your rotational speed would still be the same. This is because all parts of the Ferris wheel rotate together. Your linear speed however would change. That is a function of radius. But the question is asking about rotational speed and that does not change in this situation
The string that will break first depends on the weight of the block or bar subjected to such string.
According to Hook's law, the force applied to an elastic material is directly proportional to the extension of the material.
F= kx
where;
- <em>F is the force applied to the object = weight of the object</em>
For given two identical strings, the string that will break first depends on the mass of the bar and the block.
- If the bar is heavier than the block, then the string subjected to the bar will break first.
- On the other hand, if the block is heavier than the bar, then the string subjected to the block will break first.
Thus, the string that will break first depends on the weight of the block or bar subjected to such string.
Learn more here:brainly.com/question/4404276
Answer: the father of the nuclear physics is Ernest Rutherford
Explanation: