Answer:
thats nice to know i will send Wile E. Coyote there for his supplys
Explanation:
<span> Greenhouse gases were not historically present in the atmosphere.</span>
Answer: For example, if electricity is passed through molten lead bromide, the lead bromide is broken down to form lead and bromine. This is what happens during electrolysis: Positively charged ions move to the negative electrode during electrolysis. ... Negatively charged ions move to the positive electrode during electrolysis.
Explanation:
hope this helps you find what your looking for
Answer:
5.0 x 10⁹ years.
Explanation:
- It is known that the decay of a radioactive isotope isotope obeys first order kinetics.
- Half-life time is the time needed for the reactants to be in its half concentration.
- If reactant has initial concentration [A₀], after half-life time its concentration will be ([A₀]/2).
- Also, it is clear that in first order decay the half-life time is independent of the initial concentration.
- The half-life of K-40 = 1.251 × 10⁹ years.
- For, first order reactions:
<em>k = ln(2)/(t1/2) = 0.693/(t1/2).</em>
Where, k is the rate constant of the reaction.
t1/2 is the half-life of the reaction.
∴ k =0.693/(t1/2) = 0.693/(1.251 × 10⁹ years) = 5.54 x 10⁻¹⁰ year⁻¹.
- Also, we have the integral law of first order reaction:
<em>kt = ln([A₀]/[A]),</em>
where, k is the rate constant of the reaction (k = 5.54 x 10⁻¹⁰ year⁻¹).
t is the time of the reaction (t = ??? year).
[A₀] is the initial concentration of (K-40) ([A₀] = 100%).
[A] is the remaining concentration of (K-40) ([A] = 6.25%).
∴ (5.54 x 10⁻¹⁰ year⁻¹)(t) = ln((100%)/( 6.25%))
∴ (5.54 x 10⁻¹⁰ year⁻¹)(t) = 2.77.
∴ t = 2.77/(5.54 x 10⁻¹⁰ year⁻¹) = 5.0 x 10⁹ years.
Answer:
Oxidation of potassium amalgam with carbon dioxide results in the formation of potassium oxalate. Potassium is not reactive with benzene, although heavier alkali metals such as cesium react to give organometallic products.
Please Mark Brainliest If This Helped!