Hey there!
Al + HCl → H₂ + AlCl₃
Balance Cl.
1 on the left, 3 on the right. Add a coefficient of 3 in front of HCl.
Al + 3HCl → H₂ + AlCl₃
Balance H.
3 on the left, 2 on the right. We have to start by multiplying everything else by 2.
2Al + 3HCl → 2H₂ + 2AlCl₃
Now we have 2 on the right and 4 on the left. Change the coefficient in front of HCl from 3 to 4.
2Al + 4HCl → 2H₂ + 2AlCl₃
Now, for Cl, we have 4 on the left and 6 on the right. Change the coefficient in front of HCl again from 4 to 6.
2Al + 6HCl → 2H₂ + 2AlCl₃
Now, our H is unbalanced again. 6 on the left, 4 on the right. Change the coefficient in front of H₂ from 2 to 3.
2Al + 6HCl → 3H₂ + 2AlCl₃
Balance Al.
2 on the left, 2 on the right. Already balanced.
Here is our final balanced equation:
2Al + 6HCl → 3H₂ + 2AlCl₃
Hope this helps!
Answer:
Lead(II) sulfate
Explanation:
This looks like a double displacement reaction, in which the cations change partners with the anions.
The possible products are
Pb(NO₃)₂ (aq)+ Na₂SO₄(aq) ⟶PbSO₄(?) + 2NaNO₃(?)
To predict the product, we must use the solubility rules. Two important ones for this question are:
- Salts containing Group 1 elements are soluble.
- Most sulfates are soluble, but PbSO₄ is an important exception.
Thus, NaNO₃ is soluble and PbSO₄ is the precipitate.
A possible cause of a large percentage of error in an
experiment where MgO is produced from the combustion of magnesium would be not all of the Mg has
completely reacted. <span>
I hope this helps and if you have any further questions, please don’t hesitate
to ask again. </span>
The correct options are as follows:
1. A.
A synthesis reaction is a type of reaction in which two or more reactants combine together to form only one product. Synthesis reaction always release energy in form of light and heat, therefore, they are usually exothermic reactions. In the option given in A, nitrogen and nitrogen combine together to form ammonia; this is a synthesis reaction.
2. D
A radioactive half life refers to the amount of time it will take for half of an original radioactive isotope to decay.
In the question given above, the half life of the element is 1000. Thus, in 1000 years only half of the original amount will remain. In another 1000 years only 1/4 of the original amount will remain and in another 1000 years only 1/8 of the original amount will remain. Therefore, it will take 3 half lives before 1/8 of the original sample remain.<span />
Answer:
NaCl+H20
Explanation:
It is a neutralisation reaction in which NaOH is a base and HCl is an acid. On reaction it forms salt and water.
Please mark as brainliest