Given there are three blocks of masses , and (ref image in attachment)
When all three masses move together at an acceleration a, the force F is given by
F = ( + + ) *a ................(equation 1)
Also it is given that does not move with respect to , which gives tension T is exerted on pulley by only, Hence tension T is
T = *a ..........(equation 2)
There is also also tension exerted by . There are two components here: horizontal due to acceleration a and vertical component due to gravity g. Thus tension is given by
T = ................(equation 3)
From equation 2 and 3, we get
*a =
Squaring both sides we get
* = * (+)
* = ( * )+ ( *)
( - ) * = *
= */( - )
Taking square root on both sides, we get acceleration a
a = *g/()
Hence substituting the value of a in equation 1, we get
The new period of rotation using the new spring would be less than the period of rotation using the original spring
Explanation:
Generally the period of rotation of the mass is mathematically represented as
Here I is the moment of inertia of the mass about the rotation axis and k is the spring constant
Now looking at the equation we can tell that T is inversely proportional to the square root of the spring constant which means that for a larger spring constant the time period would be lesser