Answer:
1000 kgm²/s, 400 J
1000 kgm²/s, 1000 J
600 J
Explanation:
m = Mass of astronauts = 100 kg
d = Diameter
r = Radius = 
v = Velocity of astronauts = 2 m/s
Angular momentum of the system is given by

The angular momentum of the system is 1000 kgm²/s
Rotational energy is given by

The rotational energy of the system is 400 J
There no external toque present so the initial and final angular momentum will be equal to the initial angular momentum 1000 kgm²/s

Energy

The new energy will be 1000 J
Work done will be the change in the kinetic energy

The work done is 600 J
Answer:
- <u>The energy change would be 46kJ</u>
- <u>The energy would be absorbed</u>
Explanation:
The <em>energy change </em>during a chemical reation, i.e. the reaction energy, is equal to the chemical energy stored in the<em> bonds of the products </em>less the chemical energy stored in the <em>bonds of the reactants</em>.
Hence:
- <em>Energy change</em> = 478 kJ - 432kJ = 46kJ
The change is positive, this is, the chemical energy of the products is greater than the chemical energy of the reactants.
That corresponds to the second graph, where the level of the energy of the products in the graph is higher than the level of the energy of the reactants. Therefore, the conclusion is that the reaction <em>absorbed energy</em> and it is endothermic.
5Newtons or 5N
Ten newtons minus five Newton’s is 5 Newton’s
Answer:
100m.
Explanation:
Simply put, displacement is how far you've been displaced from your starting location. say you start at 0. You now travel E (assuming East) at 10 m/s for 10 s. Now, let's assume m is meters and s is seconds. you moved east at 10 meters per second for 10 seconds. This means that for each second you moved east, you moved 10 meters. Therefore, your displacement is 100 meters because 10 times 10 is 100. So you would write 100m as your displacement.