For the answer to the question above, it is A. Sea Breeze or <span>on shore, </span>breeze<span> is a gentle wind blowing from the </span>sea<span> toward land, that develops over bodies of water near land due to differences in air pressure created by their different heat capacity. It is a common occurrence along coasts during the morning as solar radiation heats the land more quickly than the water.</span>
<span>It is false that it is the obligation of researchers to review and comment on the research of other researchers. It is not their obligations - they don't have to do it, although they can if they want to and if they are allowed by the author him or herself. However, they are not bound by law or something like that to do this, it's just due to their kindness or genuine interest that they do this.</span>
Answer:
Total work done is 2606.08 J.
Explanation:
Given :
Mass of box , m = 23 kg .
Force applied , F = 100 N .
Angle from horizon ,
.
Coefficient of kinetic friction ,
.
Distance travelled by box , d = 34 m .
Now ,
Total work done = work done by boy + work done by friction.
Hence , this is the required solution.
Explanation:
My sources says "Inertia is an intrinsic characteristic of the object related to its mass. Inertia tells you how much force it will take to cause a particular acceleration on the object. Momentum is a function of an object's mass and velocity. Momentum is a measure of the kinetic energy of the object."
Hopes this helps!
If you feel this answer is correct please mark my answer as the most brainliest, please and thank you!
Answer:
<em>If the distance doubles, the gravitational force is divided by 4</em>
Explanation:
<u>Newton’s Universal Law of Gravitation
</u>
Objects attract each other with a force that is proportional to their masses and inversely proportional to the square of the distance.

Where:
m1 = mass of object 1
m2 = mass of object 2
r = distance between the objects' center of masses
G = gravitational constant: 6.67\cdot 10^{-11}~Nw*m^2/Kg^2
If the distance between the interacting objects doubles to 2r, the new force F' is:

Operating:

Substituting the original value of F:

If the distance doubles, the gravitational force is divided by 4