Given,
The initial inside diameter of the pipe, d₁=4.50 cm=0.045 m
The initial speed of the water, v₁=12.5 m/s
The diameter of the pipe at a later position, d₂=6.25 cm=0.065 m
From the continuity equation,

Where A₁ is the area of the cross-section at the initial position, A₂ is the area of the cross-section of the pipe at a later position, and v₂ is the flow rate of the water at the later position.
On substituting the known values,

Thus, the flow rate of the water at the later position is 5.99 m/s
Given Information:
Frequency of horn = f₀ = 440 Hz
Speed of sound = v = 330 m/s
Speed of bus = v₀ = 20 m/s
Answer:
Case 1. When the bus is crossing the student = 440 Hz
Case 2. When the bus is approaching the student = 414.9 Hz
Case 3. When the bus is moving away from the student = 468.4 Hz
Explanation:
There are 3 cases in this scenario:
Case 1. When the bus is crossing the student
Case 2. When the bus is approaching the student
Case 3. When the bus is moving away from the student
Let us explore each case:
Case 1. When the bus is crossing the student:
Student will hear the same frequency emitted by the horn that is 440 Hz.
f = 440 Hz
Case 2. When the bus is approaching the student
f = f₀ ( v / v+v₀ )
f = 440 ( 330/ 330+20 )
f = 440 ( 330/ 350 )
f = 440 ( 0.943 )
f = 414.9 Hz
Case 3. When the bus is moving away from the student
f = f₀ ( v / v+v₀ )
f = 440 ( 330/ 330-20 )
f = 440 ( 330/ 310 )
f = 440 ( 1.0645 )
f = 468.4 Hz
Answer:
735 J/kg/C
Explanation:
Q = mcT
943 = (0.447)( c )(2.87)
1.28289c = 943
c = <u>7</u><u>3</u><u>5</u><u> </u><u>J</u><u>/</u><u>k</u><u>g</u><u>/</u><u>C</u><u> </u><u>(</u><u>3</u><u> </u><u>s</u><u>f</u><u>)</u>
Yes it does ! The so-called "boiling point" is the temperature at which Bromine liquid can change state and become Bromine vapor, if enough additional thermal energy is provided. The boiling point is higher than room temperature.