1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KATRIN_1 [288]
2 years ago
15

9) For a horizontally launched projectile, decreasing the height of the

Physics
1 answer:
Volgvan2 years ago
4 0

Answer:

Increasing the launch height increases the downward distance, giving the horizontal component of the velocity greater time to act upon the projectile and hence increasing the range.

Explanation:

You might be interested in
If Mars were 10 times closer to the Sun, then the Sun would attract Mars with
Goshia [24]

Answer:

more

Explanation:

4 0
3 years ago
Read 2 more answers
How does a machine, such as a ramp, help make work easier?
Dovator [93]

Answer:

D

A machine can help decrease the input force and increase the output force.

6 0
2 years ago
A skier moving at 4.75 m/s encounters a long, rough, horizontal patch of snow having a coefficient of kinetic friction of 0.220
disa [49]
First we need to find the acceleration of the skier on the rough patch of snow.
We are only concerned with the horizontal direction, since the skier is moving in this direction, so we can neglect forces that do not act in this direction. So we have only one horizontal force acting on the skier: the frictional force, \mu m g. For Newton's second law, the resultant of the forces acting on the skier must be equal to ma (mass per acceleration), so we can write:
ma=-\mu m g
Where the negative sign is due to the fact the friction is directed against the motion of the skier.
Simplifying and solving, we find the value of the acceleration:
a=-(0.220)(9.81 m/s^2)=-2.16 m/s^2

Now we can use the following relationship to find the distance covered by the skier before stopping, S:
2aS=v_f^2-v_i^2
where v_f=0 is the final speed of the skier and v_i=4.75 m/s is the initial speed. Substituting numbers, we find:
S=- \frac{v_i^2}{2a}=- \frac{(4.75 m/s)^2}{2(-2.16 m/s^2)}=5.23 m
5 0
3 years ago
If two equal forces act on an object in opposite directions, what is the net
labwork [276]

Answer:

Net Force = 0

Explanation:

Causes objects to accelerate. Balanced Forces. Two equal forces push in opposite direction causing no change in motion causing net force = 0.

4 0
3 years ago
1. Which statement about subatomic particles is not true?
igomit [66]

1. Protons and neutrons have the same charge.

Protons have positive charge, equal to e=+1.6\cdot 10^{-19} C, while neutrons have zero charge.

2. mass number

The mass number of an atom is equal to the sum of protons and neutrons inside its nucleus.

3. Atoms are made up of smaller particles.

According to Dalton's theory, atoms are the smallest particles that make matter, and they are indivisible and indestructible, so they are NOT made up of smaller particles.

4. a solid sphere

In Dalton's theory, atoms are not made of smaller particles, so we can think them as solid spheres.

5. J. J. Thomson

In his experiment with cathode ray tubes, JJ Thomson demonstrated the existance of the electrons, which are negatively charged particles inside the atom. In his model of the atom (plum-pudding model), Thomson thought the atom consists of a uniform positive charge and the electrons are located inside this positive charge.

6. An electron has the same amount of energy in all orbitals.

In fact, each orbital corresponds to a different energy level: the farther the orbital from the nucleus, the higher the energy of the electrons contained in that orbital.

7. A hydrogen atom in heavy water has an extra neutron.

Heavy water is a type of water that contains deuterium, which is an isotope of the hydrogen consisting of one proton and one neutron (so, one extra neutron).

8. The glowing beam was always deflected by charged plates

In his cathode's ray tube experiment, Thomson shows that the beam of unknown particles (= the electrons) were deflected by charge plates, so the particles had to be also electrically charged.

9. electrons move to a lower energy level

When electrons move from a higher energy level to a lower energy, they emit a photon (light) of energy equal to the difference in energy between the two energy levels.

10. orbital

In quantum mechanics, electrons in the atom are not precisely located, since we cannot determine their exact position and velocity at the same time. Therefore, we can only describe regions of space where the electrons have a certain probability to be found, and these regions of space are called orbitals.

11. 14

According to Dalton's theory, the proportions of the reactants must be respected in order to form the same compound. Therefore, we can write:

2 g: 4 g = X : 28 g\\X=\frac{2 g \cdot 28 g}{4 g}=14 g

12. negative charge, found outside the nucleus

Electrons are particles with negative charge of magnitude e=-1.6\cdot 10^{-19}C that orbit around the nucleus. The nucleus, instead, consists of protons (positively charged, with charge opposite to the electron) and neutrons (neutrally charged).

13. move from higher to lower energy levels

When electrons move from a higher energy level to a lower energy inside a neon atom, they emit a photon (which is light) whose energy is equal to the difference in energy between the two energy levels.

14. atomic number from its mass number

In fact:

- the atomic number of an atom (Z) is equal to the number of protons inside the nucleus

- the mass number of an atom (A) is equal to the sum of protons+neutrons inside the nucleus

Therefore, we can find the number of neutrons in the nucleus by calculating the difference between A and Z:

Number of neutrons = A - Z

15. None of them

None of these examples is a good analogy to describe the location of an electron in an atomic orbital: in fact, the position of an electron in an orbital cannot be precisely described, we can only describe the probability to find the electron in a certain position, and none of these example is an analogy of this model.

8 0
3 years ago
Other questions:
  • How are the components of a homogeneous mixture distributed
    5·1 answer
  • What is the movement of alternating compressions and rarefactions?
    9·1 answer
  • The 0.100 kg sphere in (Figure 1) is released from rest at the position shown in the sketch, with its center 0.400 m from the ce
    9·1 answer
  • On the average, about what percentage of the solar energy that strikes the outer atmosphere eventually reaches the earth's surfa
    12·1 answer
  • Explain why the Newton’s Cradle device eventually comes to rest. Justify your answer with your Knowledge of Energy (pls mark Bra
    12·2 answers
  • In which scenario does radiation occur?
    15·2 answers
  • Calculate the focal length (in m) of the mirror formed by the shiny bottom of a spoon that has a 3.40 cm radius of curvature. m
    13·1 answer
  • A 5 kg brick is dropped from a height of 12m on a spring with a spring constant 8 kN/m. If the spring has unstretched length of
    15·1 answer
  • A 35 kg boy is riding a 65 kg go-cart. He pushes on the gas pedal, causing the cart to accelerate at 5 m/s2. Use the equation F
    6·2 answers
  • Which best describes the relationship between energy and entropy in the universe? for entropy to increase, energy must be added.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!