Answer is: 7,826 kg of cryolite.
Chemical reaction: Al₂O₃ + 6NaOH + 12HF → 2Na₃AlF₆ + 9H₂<span>O.
m(</span>Al₂O₃) = 12,1 kg = 12100 g.
n(Al₂O₃) = m(Al₂O₃) ÷ M(Al₂O₃).
n(Al₂O₃) = 12100 g ÷ 101,96 g/mol = 111,86 mol; limiting reactant.
m(NaOH) = 60,4 kg = 60400 g.
n(NaOH) = 60400 g ÷ 40 g/mol.
n(NaOH) = 1510 mol.
m(HF) = 60,4 kg = 60400 g.
n(HF) = 60400 g ÷ 20 g/mol = 3020 mol.
From chemical reaction: n(Al₂O₃) : n(Na₃AlF₆) = 6 : 2.
n(Na₃AlF₆) = 2 ·111,86 mol ÷ 6 = 37,28 mol.
m(Na₃AlF₆) = 37,28 mol · 209,94 g/mol.
m(Na₃AlF₆) = 7826,56 g = 7,826 kg.
As the gas is heated, the particles will begin to move faster. Likewise if you start to cool a gas, the particles will move slower. Because the gas remains at a constant pressure and volume, the particles cannot spread out so they simply move around the container even faster.
Hope this helps :)
I think you means the KO2 reacts with H2O. The equation of this reaction is 4KO2+2H2O->4KOH +3O2. The ratio of mole number of O2 and KO2 is 3:4. So the mole number of O2 produced is 0.500/4*3=0.375 mol.
Answer:
The alkali metals consist of the chemical elements lithium, sodium, potassium, rubidium, caesium, and francium. Together with hydrogen, they constitute group 1, which lies in the s-block of the periodic table
The alkali metals are all shiny, soft, highly reactive metals at standard temperature and pressure and readily lose their outermost electron to form cations with charge +1.
Answer:
a.
b.
Explanation:
a. First, we solve the specific heat equation as follows:

b. Then, we use the molar mass of titanium to determine its molar heat capacity, as follows:
