The value 6.0 x 10^3- 2.3 × 10^3 in scientific notation is 3.7 × 10^3.
<h3> What is scientific notation?</h3>
Scientific notation is a way to write very large or very small numbers so that they are easier to read and work with.
You express a number as the product of a number greater than or equal to 1 but less than 10 and an integral power of 10 .
<h3>Why it is used? </h3>
There are two reasons to use scientific notation.
- The first is to reveal honest uncertainty in experimental measurements.
- The second is to express very large or very small numbers so they are easier to read.
Given,
= 6.0 x 10^3- 2.3 × 10^3
= (6.0 - 2.3) × 10^3
= 3.7 × 10^3
Thus, we find that the value 6.0 x 10^3- 2.3 × 10^3 in scientific notation is 3.7 × 10^3.
learn more about scientific notation :
brainly.com/question/18073768
#SPJ1
Answer:
Explanation:
Salt water intrusion can cause the <u><em>fresh</em></u> water in wells to become contaminated with<u><em> salt</em></u>water.
Given what we know, the tool in question that will help the student collect data regarding the transfer of kinetic energy between water and ice would be a thermometer.
<h3>How does the thermometer measure kinetic energy?</h3>
It does not do so directly. However, kinetic energy in water molecules is reflected in the temperature of the water. When water molecules increase their kinetic energy and move more, they become hotter. Increased or decreased heat is an indirect way to measure the transfer of kinetic energy in water.
Therefore, given that the temperature of the water is a reflection of the transfer of kinetic energy happening, we can confirm that the tool that will help the student collect the data needed is a thermometer.
To learn more about kinetic energy visit:
brainly.com/question/999862?referrer=searchResults
this is ur answer
plzzz mark me as brainliest
<u><em>The variable quantities are expressed by the ideal gas law equation are; </em></u>
<u><em>pressure, volume, temperature, number of moles</em></u>
<u><em /></u>
This question is simply based on defining the ideal gas law.
- Now, A gas is considered to ideal if its particles are so far from each other in such a manner that they don't exhibit any forces of attraction between themselves. Now, in real life this is not possible but under high temperatures and pressure, we can have something close to it and that's why ideal gas laws are very important.
- This law states that states that the pressure, temperature, number of moles and volume of a gas are related to each other by the formula;
PV = nRT
Where;
P is pressure
V is volume
n is number of moles
T is temperature
R is ideal gas constant (This is fixed and not variable)
The variable quantities are expressed by the ideal gas law equation are;
<em>pressure, volume, temperature, number of moles</em>
Read more at; brainly.in/question/5212853