Answer:
The specific heat capacity of substance A is 1.16 J/g
Explanation:
The substances A and B come to a thermal equilibrium, therefore, the heat given by the hotter substance B is absorbed by the colder substance A.
The equation becomes:
Heat release by Substance B = Heat Gained by Substance A
The heat can be calculated by the formula:
Heat = mCΔT
where,
m = mass of substance
C = specific heat capacity of substance
ΔT = difference in temperature of substance
Therefore, the equation becomes:
(mCΔT) of A = (mCΔT) of B
<u>FOR SUBSTANCE A:</u>
m = 6.01 g
ΔT = Final Temperature - Initial Temperature
ΔT = 46.1°C - 20°C = 26.1°C
C = ?
<u>FOR SUBSTANCE B:</u>
m = 25.6 g
ΔT = Initial Temperature - Final Temperature
ΔT = 52.2°C - 46.1°C = 6.1°C
C = 1.17 J/g
Therefore, eqn becomes:
(6.01 g)(C)(26.1°C) = (25.6 g)(1.17 J/g)(6.1°C)
C = (182.7072 J °C)/(156.861 g °C)
<u>C = 1.16 J/g</u>
Answer:
Yes
Explanation:
As we know that octane number resist the engine from knocking.If knocking can prevent that automatically the performance of engine will increases.If octane number is 100 then it means that knocking tendency in the engine is zero.So higher the octane number better will the performance of the engine.
Generally octane number is 87 but for premier gasoline is 92 or 93.
So we can say that if octane number is 93 then car will give better performance
Answer:
ur answer friend
Explanation:
answer
<em>S</em><em>o</em><em>l</em><em>i</em><em>d</em><em>-</em><em>F</em><em>u</em><em>e</em><em>l</em><em> </em><em>R</em><em>o</em><em>c</em><em>k</em><em>e</em><em>t</em><em> </em><em>-</em><em> </em>a solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants. The earliest rockets were solid-fuel rockets powered by gunpowder; they were used in warfare by the Chinese, Indians, Mongols and Persians, as early as 13th century.
<em>L</em><em>i</em><em>q</em><em>u</em><em>i</em><em>d</em><em>-</em><em>F</em><em>u</em><em>e</em><em>l</em><em> </em><em>R</em><em>o</em><em>c</em><em>k</em><em>e</em><em>t</em><em> </em><em>-</em><em> </em>a liquid-propellant rocket or liquid rocket utilizes a rocket engine that use liqiud propellants. An inert gas stored in a tank at a high pressure is sometimes used instead of pumps in simpler small engines to force the propellants into the combustion chamber.
<em>I</em><em>o</em><em>n</em><em> </em><em>R</em><em>o</em><em>c</em><em>k</em><em>e</em><em>t</em><em> </em><em>-</em><em> </em>an ion thruster or ion drive is a form of electric propulsion used for spacecraft propulsion. It creates thrust by accelerating ions using electricity. The Deep Space 1 spacecraft, powered by an ion thruster, changed velocity by 4.3 km/s ( 9600 mph ) while consuming less than 74 kg ( 163 lb ) of xenon.
<em>P</em><em>l</em><em>a</em><em>s</em><em>m</em><em>a</em><em> </em><em>R</em><em>o</em><em>c</em><em>k</em><em>e</em><em>t</em><em> </em><em>-</em><em> </em>in this type of rocket, a combination of electric and magnetic fields are used to break down the atoms and molecules of a propellant gas into a collection of particles that have either a positive charge (ions) or a negative charge (electrons). In other words, the propellant gas becomes a plasma.
I think its helpful to you
Please mark as brainliest answer
Answer:
14,700 J
Explanation:
PE = Mgh = (75 kg)(9.8 m/s²)(20 m) = 14,700 J
Answer:
R= 53.7 Ω
Explanation:
fc= 1/(2πRC)
3000=1/(2π× 1 × 10^-6 × R)
R= 53.7 Ω