is the volume of the sample when the water content is 10%.
<u>Explanation:</u>
Given Data:
![V_{1}=100\ \mathrm{ft}^{3}](https://tex.z-dn.net/?f=V_%7B1%7D%3D100%5C%20%5Cmathrm%7Bft%7D%5E%7B3%7D)
First has a natural water content of 25% =
= 0.25
Shrinkage limit, ![w_{1}=12 \%=\frac{12}{100}=0.12](https://tex.z-dn.net/?f=w_%7B1%7D%3D12%20%5C%25%3D%5Cfrac%7B12%7D%7B100%7D%3D0.12)
![G_{s}=2.70](https://tex.z-dn.net/?f=G_%7Bs%7D%3D2.70)
We need to determine the volume of the sample when the water content is 10% (0.10). As we know,
![V \propto[1+e]](https://tex.z-dn.net/?f=V%20%5Cpropto%5B1%2Be%5D)
------> eq 1
![e_{1}=\frac{w_{1} \times G_{s}}{S_{r}}](https://tex.z-dn.net/?f=e_%7B1%7D%3D%5Cfrac%7Bw_%7B1%7D%20%5Ctimes%20G_%7Bs%7D%7D%7BS_%7Br%7D%7D)
The above equation is at
,
![e_{1}=w_{1} \times G_{s}](https://tex.z-dn.net/?f=e_%7B1%7D%3Dw_%7B1%7D%20%5Ctimes%20G_%7Bs%7D)
Applying the given values, we get
![e_{1}=0.25 \times 2.70=0.675](https://tex.z-dn.net/?f=e_%7B1%7D%3D0.25%20%5Ctimes%202.70%3D0.675)
Shrinkage limit is lowest water content
![e_{2}=w_{2} \times G_{s}](https://tex.z-dn.net/?f=e_%7B2%7D%3Dw_%7B2%7D%20%5Ctimes%20G_%7Bs%7D)
Applying the given values, we get
![e_{2}=0.12 \times 2.70=0.324](https://tex.z-dn.net/?f=e_%7B2%7D%3D0.12%20%5Ctimes%202.70%3D0.324)
Applying the found values in eq 1, we get
![\frac{V_{2}}{100}=\frac{1+0.324}{1+0.675}=\frac{1.324}{1.675}=0.7904](https://tex.z-dn.net/?f=%5Cfrac%7BV_%7B2%7D%7D%7B100%7D%3D%5Cfrac%7B1%2B0.324%7D%7B1%2B0.675%7D%3D%5Cfrac%7B1.324%7D%7B1.675%7D%3D0.7904)
![V_{2}=0.7904 \times 100=79\ \mathrm{ft}^{3}](https://tex.z-dn.net/?f=V_%7B2%7D%3D0.7904%20%5Ctimes%20100%3D79%5C%20%5Cmathrm%7Bft%7D%5E%7B3%7D)